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ABSTRACT 

Lean-burn gasoline engines are approximately 10% more fuel efficient than conventional, 

stoichiometric-burn ones.  Although relatively modest, if implemented across the entire U.S. 

automotive fleet, this improvement in fuel economy could have far-reaching implications on the 

amount of gasoline imported in the country on an annual basis.  However, the development of a 

cost-effective catalytic converter catalyst capable of meeting emission regulations for lean-burn 

vehicles still represents a major technical challenge.  Currently, lean NOX trap (LNT) and 

selective catalytic reduction (SCR) catalysts are used for this purpose, but both systems suffer 

from significant drawbacks.  For example, LNT catalysts generally require high platinum group 

metal (PGM) loadings and are highly susceptible to sulfur poisoning.  SCR catalysts require a 

costly urea-dosing system for delivery of urea as the reducing agent into the exhaust stream, as 

well as a secondary “fuel” tank for on-board storage of urea. 

LNT catalysts are typically favored for smaller gasoline engines and are designed for 

periodic operation in lean and rich environments.  NOX is stored on the LNT system during a 

longer (e.g., 60 – 120 s) lean period and rapidly reduced during a much shorter (e.g., 1- 5 s) rich 

period.  The mechanism for NOX storage is fairly well understood, but the NOX reduction 

mechanism is still the subject of considerable debate.  Lean/rich cycling monitored by in situ 

Fourier Transform infrared spectroscopy (FTIR) confirmed the presence of surface isocyanate 

(NCO) species during reduction.  Quantification of the FTIR results confirmed that surface NCO 

species could account for as much as 30% of the N2 formed during the rich period. Hydrolysis of 

the NCO species to NH3 in the presence of water vapor could also play a significant role.  The
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effect of the lean/rich cycle timing on NH3 formation over a commercial LNT catalyst was also 

considered.  At low temperatures, both the release and reduction of stored NOX was kinetically 

limited and longer rich periods favored increased NOX conversion and NH3 formation.  At 

elevated temperatures, the opposite was true and shorter rich periods favored increased NOX 

conversion and NH3 formation.  The effects of cycle timing were most pronounced in the 250 – 

400 °C temperature range, where optimization of the cycle timing could potentially decrease the 

PGM requirements of the LNT, especially in a coupled LNT-SCR system. 

SCR catalysts are typically favored for heavy-duty applications, but General Motors 

(GM) recently developed a urea-less, passive-NH3, three way catalyst SCR approach (TWC-

SCR) for lean-gasoline vehicles.  This TWC-SCR approach also relies on lean/rich cycling, but 

in this case NH3 is intentionally formed over a TWC during rich periods and stored on a 

downstream SCR catalyst.  The stored NH3 is then used during a subsequent lean period to 

reduce lean-NOX.  NH3 generation over TWCs under steady and cycling conditions was 

investigated.  The temperature, catalytic formulation and reductant concentration all affected 

NH3 formation.  Storage of NH3 on the downstream SCR catalyst was also considered.  At low 

temperatures, the selective reduction of NOX by stored NH3 was favored over a Cu-zeolite SCR 

catalyst.  Above 350 °C, NH3 oxidation was favored over NOX reduction.  Recent bench reactor 

screening using a two-reactor, bench-core reactor configuration demonstrated the viability of the 

TWC-SCR configuration and NOX conversions exceeding 98% were measured. 
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CHAPTER 1.  INTRODUCTION, MOTIVATION, LITERATURE REVIEW AND REAL 

SYSTEMS 

1.1 INTRODUCTION 

Lean-burn gasoline engines have attracted the attention of automobile manufactures 

because operation in an oxygen-rich (i.e., lean) environment leads to higher engine efficiency, 

which translates into better fuel economy and lower emissions of CO2.  For example, Heck and 

Farrauto [1] reported that lean-burn engines could achieve engine efficiencies 20 – 30% higher 

than conventional ones.  However, the three-way catalysts (TWCs) commonly employed for 

removal of emissions from stoichiometric-burn engines cannot reduce NOX in the presence of 

excess O2, which stimulated significant research activity into the development of new catalytic 

converter catalysts for application in lean-burn engine exhaust systems. 

Selective catalytic reduction by hydrocarbons (HC-SCR) and ammonia (NH3-SCR) were 

suggested as promising solutions.  Initially, HC-SCR catalysts were the most attractive solution 

because the hydrocarbon reductants necessary for NOX reduction were already available on the 

vehicle (as gasoline) and a urea/NH3 storage tank would not need to added, filled or maintained 

for this catalyst to be commercially implemented [2,3].  Unfortunately, HC-SCR catalysts 

generally suffer from poor activity in a narrow temperature range, poor thermal stability and 

especially poor hydrothermal stability [2–5].  Therefore, NH3-SCR catalysts seemed to be the 

better alternative at the time because they had already been implemented for stationary sources 

and a considerable amount of information regarding these catalytic systems was known [2–
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4,6,7].  However, NH3-SCR catalysts for mobile sources requires on-board storage of NH3/urea, 

which can limit the practicality of this system, especially for smaller passenger cars [2–4,6]. 

In the mid 1990’s, researchers at Toyota introduced an innovative solution to compete 

with HC-SCR and NH3-SCR catalysts, which they referred to as, NOX storage and reduction 

(NSR) catalysts [8].  These catalysts were designed to function in periodic lean/rich 

environments.  In this case, NOX was stored during lean phases and then reduced to N2 by 

intermittent rich periods.  Early NSR catalysts were capable of NOX conversions as high as 90%, 

but were highly susceptible to sulfur poisoning and required ultra-low sulfur fuels for 

commercial implementation [8].   

The following literature review summarizes the general operation features, reaction 

mechanisms and the highlights the function of each catalytic component present on NOX storage 

and reduction catalysts.  A brief review of real-world catalytic converter systems and how NSR 

catalysts fit into this larger framework is also discussed.  

1.2 MOTIVATION AND SIGNIFICANCE 

In the 1970s, the Clean Air Act was passed by Congress to improve air quality in the 

United States.  This gave the Environmental Protection Agency (EPA) the authority to write and 

enforce regulations regarding criteria pollutants [9].  Currently, six criteria pollutants are 

regulated by the EPA and include: ground level ozone, particulate matter, carbon monoxide, 

nitrogen oxides, sulfur dioxide and lead.  In 2006, mobile sources were responsible for 

approximately 35% of volatile organic compounds (VOCs), 58% of NOX and 78% of CO 

emitted into the atmosphere.  VOCs contain known carcinogens (e.g., benzene) and can 

additionally react with NOX in the presence of sunlight to form ground level ozone - an eye and 

throat irritant that can potentially cause respiratory tract problems and/or lung damage [10,11].  
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Similarly, nitrogen dioxide (NO2) contributes to acid rain and smog formation and is also a 

respiratory irritant.  Carbon monoxide (CO) exposure can lead to reduced mental alertness, heart 

attacks, cardiovascular diseases, impaired fetal development and death [11].   

Since automobiles account for a significant portion of the criteria pollutants released, the 

EPA has steadily implemented more and more stringent regulations to minimize the amount of 

toxic pollutants emitted by automobiles each year, as shown in Fig. 1, with mandated emission 

decreases for approaching 2 orders of magnitude (by 2004) in comparison to an uncontrolled 

vehicle operating in 1968.  This triggered a massive search for catalytic materials in the 1970s 

capable of operating under harsh emission environments.  In response, so called three way 

catalysts (TWCs) were developed and typical formulations consisted of Pt-Rh bimetallic 

particles deposited on a CeO2 modified Al2O3 support.  TWCs are capable of simultaneously 

oxidizing carbon monoxide and hydrocarbons to CO2 and H2O and reducing NOX to N2, but only 

when operated in a very narrow regime near stoichiometric conditions (air-to-fuel ratio ≈ 

14.67:1), as shown in Fig. 2. 

More recently, a 2007 assessment report generated by the Intergovernmental Panel on 

Climate Change (IPCC) stated warming of the climate to be, “unequivocal, as evident from 

observations regarding increases in global air and ocean temperatures, widespread melting of 

snow and ice and rising global sea levels” [12].  Anthropogenic greenhouse gases (GHG) were 

attributed to the observed changes in global climate.  In April of 2007, the Supreme Court 

concluded that greenhouse gases meet the clean air definition of an air pollutant, which gave the 

EPA authority to regulate greenhouse gas emissions.  On April 1, 2010 the EPA and the National 

Highway Traffic Safety Administration (NHTSA) finalized a rule that harmonized greenhouse 

gas emissions and fuel economy standards for light-duty vehicles for model years 2012 through 
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2016 [13].  The regulation requires an estimated combined average of 250 g CO2/mi, which is 

equivalent to 35.5 mi/gal if met through fuel economy improvements alone.   

 

 

 

Figure 1.  Progression of emissions standards in the US for light-duty, gasoline fueled vehicles, 

recreated from Faiz et al. [14], where (*) represents uncontrolled emissions from a 1968 light-

duty vehicle and (†) denotes that no NOX regulations were in place from 1970 to 1972. 

 

9
0

3
4

2
8

2
8

1
5

1
5

7

3
.4

3
.4

1
.7

1
5

4
.1

3 3

1
.5

1
.5

0
.4

1

0
.4

1

0
.2

5

0
.1

2
5

6
.2

3
.1

3
.1

2 2

1

0
.4

0
.2

0.1

1

10

100

1000

V
e

h
ic

le
 S

ta
n

d
a

rd
s 

(g
/m

il
e

)
-l

o
g

 s
ca

le
-

CO HCs NOx



www.manaraa.com

 

4 

 

 

Figure 2.  Conversion efficiency of CO, NOX and HCs over a TWC, Farrauto and Heck [15]. 

As previously mentioned, one obvious way to increase the fuel efficiency of the internal 

combustion engine and decrease CO2 emissions is to run the engine lean.  If you examine Fig. 2 

however, it becomes clear that the traditionally used TWC-only systems (1970s – present) will 

not be able to remove NOX under these conditions.  Thus, additional catalytic technologies in 

combination with the TWC need to be implemented in order to meet the emission regulations 

shown in Fig. 1. 

1.3 LITERATURE REVIEW 

The primary focus of this dissertation was on NOX Storage and reduction catalysts (i.e, 

Chapters 2 and 3), so an in-depth review of these materials is warranted.  Following the literature 

review, real-world catalytic converter systems are discussed, only some of which include an 

NSR catalyst.  

Lean 
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1.3.1 GENERAL FEATURES OF NOX STORAGE AND REDUCTION CATALYSTS 

As previously discussed, NOX storage and reduction catalysts are designed for periodic 

operation in lean and rich environments from 100 to 400 °C, but the optimum temperature is 

approximately 350 °C [3].  Commercial NSR formulations are based on a Pt/Ba/Al2O3 catalyst 

promoted using Rh and/or CeO2.  The platinum loading typically varies from 1 to 2.5 wt %, 

while the Ba loading usually ranges from 8 to 30 wt %.  The Rh loading is always substantially 

lower than the Pt loading, but CeO2 loadings can be quite high and may even exceed the Ba 

loadings.  Typical exhaust gas concentrations for NSR cycling conducted in laboratory 

investigations are shown in Table 1.  

The lean period duration typically ranges from 60 to 120 s, while the rich period only 

lasts 1 to 5 s [16–20].  A short rich period is a necessary feature of NSR catalyst operation 

because longer rich periods would result in a more substantial fuel penalty and negate the 

benefits of lean-burn operation.  Fig. 3 provides a simplified schematic of the NSR surface 

chemistry (Fig. 3A) and the expected NOX reactor profile (Fig. 3B) obtained during cycling.  As 

shown in Fig. 3A, NO is oxidized to NO2 over precious metals during the lean period.  The NO2 

then spills over onto the storage component and is stored in the form of a nitrite/nitrate [21,22].  

During rich periods, the nitrates are reduced to N2, but N2O and NH3 can also be produced.  

While the mechanism for NOX storage is widely accepted, the mechanism for reduction of stored 

nitrates is still unclear and seems to be dependent on the reductant [23,24].  Hydrocarbons (HCs), 

CO and H2 were included as possible reductants in Fig. 3A, but H2 is commonly cited to be the 

most effective reductant during laboratory investigations.  Generally, the activity for reductants 

is as follows: H2≥CO>C3H6>>C3H8, where CO and H2 have been reported to show similar 

activity if H2O is included in the feed [25–28].  In Fig. 3B, NOX storage is indicated by an outlet 
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NOX concentration lower than the inlet NOX concentration.  As storage elapses, the storage 

component becomes saturated with NOX and the outlet NOX concentration eventually approaches 

the inlet concentration.  At this point, the rich period begins and the NOX concentration drops 

considerably.  During the rich period, the stored NOX is reduced to N2 and the storage 

component is regenerated.  After the storage component has been regenerated, the reductant is 

removed from the feed and storage resumes. 

In some investigations H2O has been reported to increase the activity of CO as a 

reductant [28], but Epling et al. [29] reported that addition of H2O and CO2 negatively influenced 

storage capacity of NSR catalysts.  H2O was proposed to interact with hydroxyl groups on Al2O3 

and render these sites incapable of NOX storage.  CO2 and NO2 were proposed to compete for the 

same storage sites on BaO.  Since CO2 and H2O will always be present in actual engine exhausts, 

it is critical to understand how these species interact with the catalyst surface.  SO2 exposure 

results in irreversible adsorption during typical reaction conditions and prolonged exposure can 

lead to complete loss of the NSR activity [30]. 

In summary, NOX storage and reduction catalysts are designed for periodic operated in 60 

s lean, 5 s rich periods.  The optimum temperature is approximately 350 °C.  H2 and CO are the 

best reducing agents and storage occurs most readily for feeds containing NO + O2 or NO2.  Both 

H2O and CO2 can be detrimental to storage capacity, but the effect is reversible.  SO2, on the 

other hand, can completely deactivate the catalyst. 
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 Table 1
†
. Typical Operating Conditions for NSR Catalysts.  

  NO O2 C3H6 CO H20 CO2 N2/He 
Rich 0.07% 0.60% 0.2% 0.50% 10% 14.50% bal 

Lean 0.70% 4.00% 0.80% 0.10% 10% 12.70% bal 

†Reproduced  from Takahashi et al. [8]. 

 

 

 

Figure 3.  (A) Schematic showing proposed surface chemistry and timing occurring during 

storage/reduction, (B) Corresponding reactor profiles obtained during storage/reduction, Roy and 

Baiker [4]. 

(A) 

(B) 
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1.3.2 THE MECHANISM OF NOX STORAGE AND REDUCTION 

1.3.2.1 NOX STORAGE 

Many investigations have been performed in an attempt to understand the mechanism for 

NOX storage [21,22,27,31–38].  Initially,
 
Bogner et al. [38] proposed that storage occurred as 

nitrites, where oxidation of NO to NO2 over Pt was necessary before storage could occur.  

However, Sedlmair et al. [31] observed storage in the form of nitrites and nitrates when a 

Pt/Ba/Al2O3 catalyst was exposed to mixtures of NO and O2 and reported that the amount of 

surface nitrites on Ba reached a maximum at 18 min and declined thereafter.  This led the authors 

to conclude that nitrites were intermediates in the formation of nitrates.  Several other authors 

have also suggested the formation of nitrites to be an intermediary step [21,22,33,39].  

Alternatively, Prinetto et al. [40] proposed that storage of NO2, which was not promoted by Pt, 

occurred through a disproportionation reaction that led to a stored nitrate and release of gas 

phase NO. Other researchers have also reported storage via this mechanism [38,41], but Cant and 

Patterson [32] reported an initial, short-lived phase involving storage of NO2 without the 

evolution of gas phase NO.  Again, this observation supports the intermediacy of nitrites, as 

more clearly seen for disproportionation reaction mechanism as shown in Eqns. 1, 2 and 3
 
[4]. 

��� + ���(	) 	→ ��� − ��� (1) 

��� − ��� →	���� + 	��(	) (2) 

���� + 2���(	) 	→ ��(���)� (3) 

 

In a later study, Forzatti et al. concluded that NOX storage could occur via two routes, as 

shown in Fig. 4
 
[42].  The “nitrite” route (A) involves oxidation of NO on Pt sites and 

subsequent storage as nitrites on neighboring Ba sites, which can later be oxidized to nitrates.  
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The “nitrate” route (B), also known as the disp

of NO to NO2 on Pt and subsequent storage on neighboring Ba sites as nitrates wit

of gas phase NO.  Under typical rea

dominant route for NOX storage.

Figure 4.  Mechanism of NO storage in the presence of oxygen, where (A) represents the 

“nitrite” route and (B) represents the “nitrate” r

 

Figure 5.  Mechanism of NOX st

 

Fanson et al. [43] proposed a different mechanism involving the direct adsorption of NO 

on BaO as a surface nitrite, which was subsequently oxidized by another adsorbed nitrite species 

to a monodentate nitrate, as shown in Fig. 

9 

, also known as the disproportionation route, proceeds through oxidation 

on Pt and subsequent storage on neighboring Ba sites as nitrates wit

.  Under typical reactions conditions, the nitrite route was expected to be the 

. 

 

echanism of NO storage in the presence of oxygen, where (A) represents the 

represents the “nitrate” route, Forzatti et al. [42] 

 

storage in the absence of oxygen, Fanson et al. [43]

proposed a different mechanism involving the direct adsorption of NO 

on BaO as a surface nitrite, which was subsequently oxidized by another adsorbed nitrite species 

to a monodentate nitrate, as shown in Fig. 5.  The oxidation of NO to NO2 over Pt did not appear 

proceeds through oxidation 

on Pt and subsequent storage on neighboring Ba sites as nitrates with the evolution 

expected to be the 

echanism of NO storage in the presence of oxygen, where (A) represents the 

[43]. 

proposed a different mechanism involving the direct adsorption of NO 

on BaO as a surface nitrite, which was subsequently oxidized by another adsorbed nitrite species 

over Pt did not appear 
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to be a critical step in this work because the authors observed significant storage even in the 

absence of oxygen.  They cited the primary role of Pt to be adsorption of gas phase O2, which 

then spills onto nearby BaO sites.  This conclusion contradicts other studies, which assert that the 

primary method of storage occurs through interaction of NO2 with BaO [38,41,44–46].  

Recently another adsorption mechanism has been discussed involving co-adsorption or 

cooperative adsorption of nitrite-nitrate pairs on BaO [47–54].  Several theoretical studies have 

predicted the formation of nitrite-nitrate pairs on MgO and BaO [47,53,54] and Yi et al. [49] 

experimentally confirmed the presence of these nitrite-nitrate pairs on a thick BaO model surface 

upon admission of NO2 at 90 K.  In a later work, Yi and coworkers [48] suggested the 

simultaneous monotonic increase and saturation of peaks at 1240 and 1300-1500cm
-1

 to be 

indicative of nitrite-nitrate ion pairs when BaO films were exposed to NO2 at 300 K.  

Alternatively, Desikusumastuti et al. [51] observed the formation of nitrites followed by nitrates 

when BaO was exposed to NO2 at 100 K, but simultaneous formation of nitrites and nitrates at 

300 K.  They proposed a cooperative mechanism that operates at low temperatures that switches 

to a non-cooperative mechanism at higher temperatures.  In summary, these mechanistic 

pathways have been developed to describe NOX adsorption on BaO and the operating mechanism 

could largely be dependent on the source of NOX available, the Ba loading and the temperature 

of exposure. 

Considering that oxidation of NO to NO2 has been reported as a key step in the storage 

mechanism, it is worth mentioning that two kinetic models have been proposed for NO oxidation 

on Pt.  Olsson et al. [55] proposed a Langmuir-Hinshelwood model and observed that adding 

BaO to the support decreased the rate of NO oxidation.  The basic nature of BaO was used to 

explain this observation, where BaO may donate electron density to the platinum.  A more 
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electron rich Pt surface would then be expected to favor the formation of oxides [55–57].  

Crocoll et al. [58] proposed Eley-Rideal kinetics and O2 dissociatively adsorbed on the surface of 

Pt, while gas phase NO reacted with Oads to form NO2.  A negative order was observed with 

respect to NO2, which implied that NO2 inhibited oxidation of NO.  Oxidation of Pt
0
 to Pt

+δ
 by 

NO2 has previously been reported
 

[56].  Interestingly, both kinetic reports mentioned 

deactivation due to formation of oxides. 

1.3.2.2 REDUCTION 

The reduction mechanism for stored NOX has not been investigated nearly as thoroughly 

as the storage mechanism, possibly because the duration of the rich period makes it much more 

difficult to investigate [16].  For example, Nova et al. previously reported that the possible 

mechanisms for the reduction of NOX in a rich environment are fairly well established from 

research on TWCs, but the mechanism for NOX release from the storage component is still open 

to debate [59,60].  Currently multiple release mechanisms have been proposed including: 1.) 

thermal release enabled by heat generated from oxidation of reductants, 2.) a decrease in gas 

phase oxygen, which destabilizes stored nitrates due a shift in the storage equilibrium, 3.) 

spillover and reduction of NO2 on Pt sites, 4.) establishment of a net reducing environment that 

decreases the stability of nitrates, 5.) direct reaction of the reductant (or activated reductant 

molecule spilled over from Pt) with stored nitrates [59–62].  Nova et al. [60] concluded that the 

main mechanism for decomposition of stored nitrates did not proceed via thermal decomposition, 

but instead proceeded through one of the following pathways:  1.) activation of H2 on Pt site, 

followed by spillover of the H2 onto the alumina support and migration towards a nitrate 

adspecies, which is then either decomposed to gas-phase NOX that re-adsorbs on Pt to be reduced 

or directly reduced on the support 2.) surface diffusion of NOX adspecies toward reduced Pt and 
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subsequent reduction.  Further reports by Nova and coworkers [23,63,64] favor the two-step 

reduction mechanism involving activation of H2 on a Pt site, followed by spillover onto the 

alumina support and surface diffusion towards the nitrate adspecies, which are then decomposed 

to NOX and released into the gas phase.  These species are then further reduced over Pt sites to 

form NH3.  The NH3 can then react with stored nitrates to produce N2.  Mulla et al. [65] also 

predicted the formation of NH3 as an intermediate, when H2 was used as the reductant.  If CO 

was used as the reductant, in the absence of water, the mechanism was proposed to proceed via 

cyanate/isocyanate species that react with nitrates to produce N2 [24,64].  In the presence of 

water, the cyanate/isocyanate species could be hydrolyzed to form NH3, which would then 

reduce stored NOX, as previously discussed.  Lastly, CO and water mixtures could undergo the 

water gas shift (WGS) reaction to produce hydrogen, where H2 would then reduce nitrates via the 

already described mechanism.  Kumar et al. performed isotopic labeling experiments and again 

concluded that NH3 was an important intermediate in the reduction of stored NOX [66].  The 

reduction of NOX by hydrogen can be summarized according to Fig. 6, where path 1 is direct 

reduction of NOX to N2, path 2 is reduction of NOX to ammonia, path 3 is reduction of stored 

NOX by ammonia, path 4 is oxidation of NH3 to N2, and path 5 is decomposition of NH3 to N2
 

[67].  However, the reduction of NOX by CO, CH4, C3H6, C3H8 and other small hydrocarbons has 

not been investigated nearly as thoroughly, but the direct reduction by CO and hydrocarbons and 

indirect reduction via steam reforming and water gas shift have been suggested [4]. 

 

Figure 6.  Possible reaction pathways for the reduction of stored NOX by H2, Clayton et al. [67]. 
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1.3.2.3 THE EFFECT OF THE PT-BAO INTERFACE 

 

 One factor known to influence both the mechanism for storage and reduction of NOX is 

the Pt-BaO interface and several different types of storage sites have been mentioned in the 

literature [21,29,68–70].  Mahzoul et al. [46] initially proposed two types of Pt sites, one close to 

barium, which was responsible for the storage of nitrates, and one far from barium responsible 

for the oxidation of NO to NO2.  In a later study, Cant et al. [68] observed a five-fold increase in 

the NOX storage-reduction rate for a Pt/BaO/Al2O3 over a physical mixture of Pt/SiO2 and 

BaO/Al2O3 when a system comprising a Pt/SiO2 catalyst, solely for oxidation of NO to NO2, was 

placed upstream of a Ba/Al2O3.  The authors concluded that co-loading of both Pt and Ba was 

essential for efficient NOX storage and reduction.  Lindholm et al. [69] attributed the idea of 

different storage sites to one of several possibilities including: 1.) aluminum and barium storage 

sites, 2.) surface and bulk barium sites, and 3.) barium close and far from the noble metal.  

Bhatia et al. [70] also defined two different storage sites in their modeling efforts of the NSR 

process.  “Fast” sites corresponded to a location close to the Pt/BaO interface – where storage 

was most likely to occur according to the nitrite route shown in Fig. 4.  “Slow” sites represented 

storage in locations far from the Pt/BaO interface – where storage was most likely occurring 

according to the nitrate route described in Fig. 4.  Sakamoto et al. [71] demonstrated using a thin 

film of BaO on a Si (100) that NOX adsorbed more readily near the Pt/BaO interface.  The 

decomposition of Ba(NO3)2 was also suggested to occur most rapidly near the Pt/BaO interface.  

The authors suggested that this preferential adsorption explained observations by others in the 

literature that only 20% of the NSR catalyst is utilized [72].  Recently, Kumar and coworkers 

[66] used isotopic labeling studies to investigate storage near-to and far-from the Pt/Ba interface.  



www.manaraa.com

 

14 

 

Fig. 7 summarizes their results, where (a) is a pristine surface, (b) is after exposure to NO, (c) is 

after NO-
15

NO isotopic exchange, and (d) is after reduction. Notice that the authors have only 

shown significant reduction near the Pt/BaO interface, whereas the rest of the surface remains 

partially saturated with NOX.  Lastly, many groups have stressed the importance of the Pt/Ba 

interface for optimization of both the storage and reduction cycles in NSR catalysts 

[8,21,29,46,73,74]. 

   

 

Figure 7.  Schematic of NOX storage (shaded), 
15

NOX isotopic exchange (dots) and reduction on 

a Pt/BaO/Al2O3 catalyst where (a) A pristine surface, (b) After NOX storage, (c) After 
15

NOX 

exchange and (d) After reduction, Kumar et al. [66]. 

 

1.3.3 IMPORTANT CATALYST COMPONENTS 

NOX storage and reduction catalysts are usually comprised of the following constituents: 

1.) a noble metal, which provides both NO oxidation and reduction activity, 2.) a storage 

component, which mainly provides NOX storage capacity, but may also act as a promoter for 

other reactions (e.g. Ba has been suggested as a promoter for the water gas shift reaction [75], 3.) 

a support, which provides a high surface area substrate on which the storage component and 
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noble metal are dispersed.  Additionally, a variety of promoters have been investigated to 

increase the thermal stability of the support or stabilize precious metal dispersion, increase sulfur 

tolerance, enhance storage capacity and improve reduction efficiency or selectivity.  The 

following sub sections summarize the compounds used and their currently proposed/accepted 

role in the NOX storage and reduction catalytic system. 

1.3.3.1 NOBLE METALS 

The impact of noble metals on NSR activity can be divided into four main subdivisions 

including: 1.) oxidation of NO to NO2, 2.) reduction of stored NOX to N2 and 3.) resistance to 

sulfur tolerance.  In the following subsections, each of these issues will be addressed regarding 

the specific metals commonly used in NSR catalysts.  

PLATINUM 

 Pt has been extensively used in automotive catalysis because it is an excellent oxidation 

catalyst [7].  Therefore, it should not be surprising that Pt is the most commonly used noble 

metal in NSR catalysts.  As mentioned, the loading typically varies from 1-2.5 wt % with a 

dispersion ranging from 3 to 80% [76–81].  For NSR catalysts, one of the most important aspects 

of Pt is its ability to oxidize NO to NO2.  Clayton et al. [77] reported that conversion of NO to 

NO2 reached a maximum between 270 to 330°C, where the catalyst with 20 % dispersion of Pt 

was most active, followed by 50 % dispersion, 8 % dispersion and lastly, 3 % dispersion.  This is 

in agreement with a study by Kim et al. [82] where smaller Pt particles were reported to offer 

better NOX storage activity.  However, Lee et al. [83] determined that a sample with 4% 

dispersion had a turn over frequency (TOF) 100 times greater than a sample with 82% 

dispersion, which is also in agreement with other reports in the literature
 
 [84].  This led Xue et 

al. [84] and others to propose that NO oxidation over Pt was a structure sensitive reaction since 
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NO oxidation occurred more readily over larger particles [83].  Olsson and Fridell [56] similarly 

argued that smaller Pt particles were less active for NO oxidation, but argued the difference was 

due to increased susceptibility of oxidation.  XPS measurements conducted on Pt/Al2O3 and 

Pt/Ba/Al2O3 samples confirmed the presence of both PtO and PtO2 phases, but the Pt/Ba/Al2O3 

catalyst generally formed more PtO2 than Pt/Al2O3.  The authors explained the increased 

formation of Pt oxides on Pt/Al2O3 using the electrophilic nature of the alumina support, where 

Pt was expected to donate electron density to the Al2O3 support.  To form Pt oxide, Pt must be 

able to transfer electrons to the oxygen, but when Pt is supported on an electrophilic support 

electron donation from the Pt to the support suppresses formation of Pt oxides [57].  The basic 

nature of BaO influences Pt in the opposite way and higher amounts of Pt oxides were observed.  

When a Pt/Al2O3 and Pt/BaO/Al2O3 catalyst were exposed to pulses of NO in the absence 

of oxygen during temporal analysis of products (TAP) experiments, both NO decomposition and 

adsorption/storage were observed [85].  NO decomposition was proposed to occur through 

Reactions 4 – 10.  Over the reduced Pt catalyst, the first pulses of NO produced nearly 

stoichiometric amounts of N2, but as the number of pulses increased, oxygen accumulated on the 

surface and inhibited NO bond scission.  As the surface become more crowded, N2O was 

observed.  The N2O yield reached a maximum at the same time as breakthrough of NO was 

observed.  Over Pt/Ba/Al2O3, NO breakthrough was delayed because storage and decomposition 

could occur simultaneously.  Under these conditions, storage could occur either through spillover 

of oxygen from Pt onto the Ba, where a BaO2 site could then directly react with gas phase NO, or 

direct formation of NO2 over the Pt, which then reacts with BaO.   

�� + ��	 ↔ �� − �� 4 
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2� − �� ↔ ��(	) + 2�� 6 

2�� − �� ↔ ���(	) + �� + � − �� 7 

�� − �� + � − �� ↔ ���(	) + 2�� 8 

�� − �� + � − �� ↔ ���(	) + 2�� 9 

� − �� + � − �� ↔ ��(	) + 2�� 10 

 

Anderson et al. [86] observed a dramatic increase in NOX storage for Pt/Ba/Al2O3 over 

Ba/Al2O3, which further supported the crucial role of Pt in NSR catalyst formulations.  Pt has 

also been reported to catalyze the transition from Ba nitrites to Ba nitrates [22,86].  Schmitz et al. 

[87] determined that NO oxidation over Pt was influenced by the following factors (in order of 

importance): support > pretreatment > loading > calcination atmosphere > calcination 

temperature > precursor salt.  The reduction of NO on Pt does not seem to be nearly as 

dependent on particle size, but could be related to the strength of the Pt–NO bond or could also 

be structure sensitive, as is the case for Pd and Rh [83,84,88–92]. 

As demonstrated by Fridell et al. [62], Pt also plays an important role in the reduction of 

stored NOX.  For example when BaO/Al2O3 was cycled between lean and rich periods, no 

appreciable NOX storage was observed during lean periods and only minor NOX reduction 

occurred during rich phases.  A Pt-Rh/Al2O3 catalyst was able to completely reduce NOX during 

rich phases, but no NOX storage was observed during lean periods.  Su et al. [22] also reported 

that Pt was necessary for activation of hydrocarbons.  Currently, NO reduction over Pt is 

explained by one of two mechanisms including: (1) NO decomposition on reduced Pt sites, 

where the main role of the reductant is to scavenge surface oxygen from Pt and keep the Pt in a 
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reduced state so the NO dissociation can occur, or (2) the direct reaction between released NOX 

and adsorbed reductants on Pt sites [5,60,93].  In a series of publications, Abdulhamid et al. [25–

27] demonstrated that Pt was an effective metal for reduction of stored NOX using H2 and CO for 

temperatures between 250°C and 350°C.  C3H6 was reported to be somewhat less efficient and 

C3H8 showed no NOX reduction capability.  Although CO was initially an effective reductant, the 

authors reported deterioration of the reduction efficiency with increased cycling.  Lower 

temperatures also reduced the reduction efficiency for CO.  The observed loss was attributed to 

either poisoning of Pt by strongly adsorbed CO or through the formation of isocyanate species on 

alumina or barium in the Pt/BaO interfacial region, which would prevent NOX spillover from the 

storage component to the precious metal.  The authors attributed CO accumulation on the surface 

Pt sites to be the main cause of deactivation from 150 to 250°C due to the high heat of adsorption 

of CO on Pt.  However an FTIR band at 2117 cm
-1

 (assigned to a cyanide species on Pt) was 

observed and was stable under both lean and rich conditions, which was assigned to a stable 

cyanide species that blocked NOX  spillover from the storage sites to Pt. 

The location of Pt, synthetic route, method of deposition and type of precursor used also 

affect the catalytic performance [76,80,81,94–96].  Elizundia et al. [81] reported that deposition 

of the Ba precursor before the Pt precursor led to a more active catalyst.  In their case, 

preparation of a 1.3%Pt-15.7%Ba/Al2O3 (w/w) sample was accomplished using sequential wet 

impregnations of tetraammineplatinum nitrite [Pt(NH3)4(NO2)2] and barium acetate 

[Ba(CH3COO)2].   After each impregnation, samples were dried and then calcined at 650°C for 4 

h.  The dispersion of Pt ranged from 0.6 – 5.5%.  The authors attributed the increased catalytic 

activity of samples where Ba had been impregnated first to increased Pt/Ba interfacial contact.  

Lindholm et al. [95] reported higher storage capacity and reduction efficiency for samples where 
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Pt was deposited before Ba.  Preparation of monolithic 3%Pt/20.7%Ba/Al2O3 samples was 

accomplished using incipient wetness impregnation of platinum nitrite, Pt(NH3)4(NO2)2, and dip 

coating of barium nitrate, Ba(NO3)2.  After each impregnation, samples were dried at 80°C for 12 

h and then calcined at 550°C for 2 h.  The dispersion of Pt ranged from 18 – 25%.  Lindholm et 

al. [95] hypothesized that the higher activity of Al/Pt/Ba was caused by better dispersion of Ba 

on the support, which led to better interfacial contact between Pt and Ba.  Interestingly, both 

Elizundia et al. [81] and Lindholm et al. [95] linked the catalytic activity to the degree of contact 

between Pt and Ba, but observed opposite results in terms of impregnation order.  Dawody et al. 

[94] compared samples prepared from hexachloroplatinic acid [H2Pt(Cl)6],  tetraammineplatinum 

hydroxide [Pt(NH3)4(OH)2], diammineplatinum nitrite [Pt(NH3)2(NO2)2] and platinum nitrate 

[Pt(NO3)2] and found that samples derived from platinum nitrate were the most active for NOX 

storage and reduction followed by tetraammineplatinum hydroxide.  The resulting dispersions 

and activity differences were explained by electrostatic interactions and/or ion and ligand 

exchange between the Pt complex and the BaO/BaCO3/Al2O3 support.  Pereda-Ayo et al. [96] 

similarly reported that tetraammineplatinum hydroxide to be a better Pt precursor than 

hexachloroplatinic acid when used for synthesis of NSR materials.  Buchel et al. [97] synthesized 

NSR catalysts using the flame spray pyrolysis method [98,99], with Pt selectively on Al2O3 or 

BaCO3 and found that Pt located on Al2O3 exhibited better NO oxidation activity, but Pt located 

on Ba showed greater reduction activity.  Above 350 °C, the location of Pt insignificantly 

influenced storage and reduction. 

Pt, like Ba, is susceptible to sulfur poisoning and the formation of Pt sulfides, which 

could block potential NO oxidation sites, have been observed [35,36,100–102].  Sedlmair et al. 

reported a higher reduction temperature for Pt during TPR after the catalyst had been sulfided 
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and hypothesized that decreased activity during cycling might be explained by the higher Pt 

reduction temperatures [36].  Amberntsson et al. [103–106] alternatively reported an increase in 

NO oxidation activity for Pt-containing catalysts after exposure to SO2, which they explained by 

reaction of Pt-O with SO2 to form sulfites and sulfates.  The sulfided Pt was hypothesized to 

remain in a reduced state during NO oxidation, which explained the higher activity.  Fridell et al. 

[106] also proposed that exposure to SO2 leads to sintering of the Pt particles, which enhanced 

the oxidation activity because larger particle were less likely to be oxidized and also exhibited 

higher TOFs.  This rational was explained in a previous work by Olsson et al. linking dispersion 

and the presence of BaO to differences in flow reactor studies [56], Pt with a higher dispersion or 

in the presence of BaO was more likely to be oxidized, which then decreased NO oxidation 

activity.  During lean conditions, Pt has been reported to catalyze the oxidation of SO2 to SO3, 

which facilitates the formation of bulk BaSO4 [107], but Su et al. [22] observed nearly-identical 

spectra  after SO2 + O2 exposure for a Ba/Al2O3 and Pt/BaO/Al2O3 catalyst and concluded that Pt 

did not play a significant role during poisoning by SO2.  During rich conditions, Pt can also form 

Pt-S bonds, as observed by Kim et al. and others [35,108].  The formation of BaS has also been 

reported [109,110].  During subsequent lean periods, Pt-S and BaS species could be re-oxidized 

to form bulk/surface barium and aluminum sulfates [35,36].  Re-oxidation of reduced sulfur 

compounds is thought to preferentially poison sites near the Pt/BaO interface [35,36,71,102,111]. 

PALLADIUM 

 In recent publications, Pd has been suggested as a viable alternative to Pt for NSR 

catalysts because of its high activity during both lean and rich periods and its ability to activate 

saturated hydrocarbons [25,27,112,113].  Facile interconversion between Pd
2+

 and Pd
0
 during 

lean and rich cycling has also been suggested as another advantage of Pd over Pt [4].  Salasc et 
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al. [113] demonstrated that a Pd/BaO/Al2O3 catalyst stored more NOX than Pt/BaO/Al2O3 at 

300°C, but the Pt containing catalyst stored slightly more at 400°C
123

.  The Pd/BaO/Al2O3 

sample was also able to completely reduce all stored NOX at 300°C, while the Pt-based catalyst 

exhibited incomplete reduction.  Salasc et al. [113] also demonstrated the beneficial role of BaO 

during reduction; where the Pt/Al2O3 and Pd/Al2O3 catalysts slowly deactivated during extended 

rich periods, but the Pt/Ba/Al2O3 and Pd/Ba/Al2O3 reduced most of the gas phase NOX at 400°C.  

Pt/BaO/Al2O3 in comparison to Pd/BaO/Al2O3 showed more significant deactivation during 

extended rich periods, which led the authors to conclude that Pd was less susceptible to self 

poisoning mechanisms.  Migration of NOX species originating from decomposition of barium 

nitrate to noble metal sites or spillover of hydrocarbons to the BaO or interactions between the 

precious metal and storage component could explain why BaO has such a positive effect on the 

sustained NOX reduction activity of NSR materials.  Lastly, Pd
2+

 and Pd
0 

were observed during 

lean and rich cycling for Pd/BaO/Al2O3, but only metallic Pt was observed for Pt/Ba/Al2O3.  

Recently, Weiss et al. [114,115] proposed that NO oxidation on Pd was also affected by the size 

of the particles, which was discussed in the previous section regarding Pt.  In that case, NO 

oxidation turnover rates were insensitive to oxidative or reductive pretreatments because PdO 

was formed rapidly and is thermodynamically favored for NO oxidation conditions.  Instead, the 

strength of the Pd-O bond determined NO oxidation turnover rates.  Smaller particles have 

stronger bonds and fewer vacancies on the surface for NO oxidation to occur.    

Abdulhamid et al. [25] demonstrated that a Pd-based NSR catalyst stored more NOX than 

a Pt based catalyst when CO, C3H6 and C3H8 were used as model reductants, but the Pt-based 

catalyst stored more NOX when H2 was used.  Additionally, Pd was the only precious metal 

tested that showed activity for reduction when C3H8 was used as a model reductant.  While Pd 
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may seem more active, it is important to note that dispersion of Pt was 4%, while the dispersion 

of Pd was 15% and this may have affected the results by changing Pd/BaO and Pt/BaO 

interfacial contact areas, respectively.  In another study by Abdulhamid et al. [27], Pd and Pt 

were compared using in-situ DRIFTS and reactor studies.  Again, Pd seemed to be more active 

when CO or C3H6 was used as the reductant.  Again however, differences in precious metal 

dispersion made elucidation of the results more complicated (5% for Pt and 12% for Pd).  In both 

cases, the reduction of stored NOX occurred through the formation of isocyanates, where higher 

concentrations of isocyanates were formed on Pd samples.  In this case, the authors concluded 

that the lower NOX storage and reduction properties were related to lower metal dispersion 

and/or lower metal/Ba interfacial area and not to inherent differences in the precious metals 

themselves.  In a later study, Su et al. [112] reported that a Pd/BaO/Al2O3 catalyst had higher 

overall NOX reduction efficiency than Pt/BaO/Al2O3 catalyst between 250 and 375 °C, but the 

performance was almost identical above 375 °C.  The improvement in efficiency was related to 

higher activity for the oxidation/activity of propylene and higher activity for the formation of 

surface nitrite species.  In this case, the metal dispersions were approximately the same (around 

40%), but the molar concentration of Pd was approximately 2 times higher than Pt.  

Desikusumastuti et al. [52] also observed strong nitrite features for Pd containing catalysts and 

concluded that the highest concentration of surface nitrites will be present in samples with a 

strong Pd/BaO interaction.  The sulfur resistance of Pd containing NSR materials has not been 

investigated, but Pd/Al2O3 diesel oxidation catalysts have been reported to be susceptible to 

sulfur poisoning [116].  Kolli et al. [116] observed losses of precious metal dispersion and 

decreased activity for oxidation reactions.  The supports containing Pd exhibited higher total 
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sulfur than alumina samples alone, which further demonstrated the catalytic role of Pd in sulfur 

oxidation and storage on to the support. 

RHODIUM 

Very few studies have been performed using monometallic Rh as the precious metal for 

NSR systems [16,25,27,117,118].  Abdulhamid et al. [25] found Rh/BaO/Al2O3 to have poor 

NOX storage capacity, but high reduction ability in comparison to Pt and Pd.  The authors 

suggested the poor activity of supported Rh catalysts was due to lack of NOX spillover from Rh 

to BaO.  Rh also had the lowest activity for NH3 formation, which could be explained by an 

increased ability to dissociate NO on the metal surface. This is in agreement with a study done 

by Breen et al. where Rh containing samples produced the smallest amount of ammonia [119].  

In a later study, Breen et al. suggested that spillover from Rh to BaO may not be limiting 

storage-reduction activity and suggested that Rh may simply be a poor oxidation catalyst 

[16,120].  Alternatively, Huang et al. [117] observed better storage-reduction properties for 

Rh/CaO/Al2O3 over Pt or Pd supported on CaO/Al2O3, which demonstrates that NSR properties 

could be both a function of precious metal and storage component.  Vijay et al. [118] observed 

similar storage amounts for Pt/BaO/Al2O3 and Rh/BaO/Al2O3 if long cycle times were used.  

Therefore, discrepancies on the role of Rh exist and further study is warranted, especially since 

many commercial catalysts contain mixtures of Pt and Rh.  While the role of Rh in NOX storage 

and reduction chemistry may still be unclear, Mahzoul et al. observed Rh to inhibit sulfur 

formation, which is a desirable attribute for NSR catalysts [121]. 

Other monometallic metals investigated include: Cu, Co, Fe, and Ag.  HC-SCR systems 

commonly employ a Ag/Al2O3 catalyst and can achieve NOX conversions as high as 79% 

[122,123].  Along these lines, Mihalova et al. [124] compared a Ag/BaCO3/Al2O3 and 
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Pt/BaCO3/Al2O3 catalyst and observed a maximum NOX conversion of approximately 50% at 

500 °C for Ag based samples, but 90% conversion at 350 °C for Pt based samples.  While the Pt 

based sample initially had much higher activity, they were much more susceptible to sulfur 

poisoning.  After sulfur exposure, the Ag sample was more active when compared to the Pt 

samples.  In a series of publications, Vijay et al. [118,125,126] studied Co-containing NSR 

materials.  They found that a 5%Co/15% Ba on alumina and 1%Pt/15% Ba on alumina stored 

equivalent amounts of NOX when the catalysts were exposed to lean environments at 375 °C.  

XRD confirmed that Co was present as a highly oxidized Co3O4 phase.  In comparison to Co, Pt 

was still a better oxidizing metal, but Co is much cheaper and could therefore be used in much 

higher amounts.  Co was also more uniformly distributed on the support, which was thought to 

lead to better interfacial contact between the oxidizing metal and storage component.  

Unfortunately, Co exhibits poor reduction activity and another noble metal, most likely Rh, 

would need to be included to reach high conversions.  Park et al. [127] also observed NSR 

activity for Co containing NOX storage catalysts.  Monometallic Fe samples were studied by 

Hendershot et al. [128,129] using high throughput experimentation and the presence of Fe was 

found to affect the performance significantly less than the Pt and Ba weight loadings.  Wang et 

al. [130,131] synthesized a Cu/K2Ti2O5 NSR catalyst because Cu is capable of simultaneous 

removal of SO2 and NOX in flue gases and they hoped to extend some of these desirable 

properties to NSR catalysts. They observed storage and reduction activity at higher temperatures 

(500 – 600 °C), but observed poor reduction activity at lower temperatures (200 – 400 °C).  Ir 

based catalysts have been suggested to be highly active for SCR and DFT calculation have 

implied Pt/Ir to be an interesting bi-metallic system, but no experimental investigations have 

been performed using Ir to date [132–134]. 
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BIMETALLIC 

 Most of the model NSR catalysts considered only contain Pt and Ba supported on Al2O3,  

but commercial catalysts consist of complex mixtures involving differing combinations of the 

following elements: Pt, Pd, Rh, Ba, K, Ce, La, Zr, Mg, Ti, and Al2O3 [31,45,102,135–138].  

Sedlmair et al. used a Pt-Rh/BaO-BaCO3/Al2O3 commercial catalyst in their studies [31,102].  

Others have used formulations including Mg, Al, Ce, Zr, Ba, Pt, Pd, Rh, La, Fe, and Ti 

[136,139,140] or Pt, Rh, Ba, Ce and Al [138].  While many investigations have used either 

model or commercial bi-metallic catalysts [31,46,62,75,102,104,105,121,135–139,141–156], 

only a small number of these investigations have been devoted to understanding the specific role 

each metal plays on the observed catalytic performance [16,46,75,121,141,153].  Commercial 

catalysts typically contain a large number of elements because the addition of multiple promoters 

can increase activity, selectivity or improve catalyst lifetime.  For example, Choi et al. [135] 

investigated sulfur poisoning on an industrial sample containing Pt, Pd and Rh, in addition to 

many other component.  The reasoning for addition of three different metals could be as follows: 

Pt for the oxidation of NO to NO2 [55,115], Pd for activation of saturated hydrocarbons 

[25,27,112,113], and Rh for its high reduction activity and low selectivity to ammonia [27,119].  

However, the addition of multiple metals does not necessarily infer additive properties as 

observed during monometallic studies.  Therefore, bimetallic and tri-metallic interactions must 

be carefully considered in order to determine if the additional metals provide increased catalytic 

performance.  Otherwise, the higher costs associated with incorporation of additional precious 

metals is unwarranted.  This section focuses strictly on Pt-Rh supported on BaO containing 

substrates.  No literature was available for Pd containing bimetallic samples. The addition of 
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other elements will be discussed in section 1.3.4.3 on supports (MgO, TiO2, ZrO2 and La2O3) or 

section 1.3.4.4 on promoters (mainly Co, Fe and CeO2). 

 Initially, Mahzoul et al. [46,121] observed that washcoat samples containing Pt, Rh, Ba, 

La, and Al stored more NOX at saturation conditions than other standard washcoat formulations 

containing only Pt, Ba and Al2O3.   The authors also determined that Rh inhibited the formation 

of sulfates.  Amberntsson et al. [141] performed a detailed study on NO oxidation and reduction 

as a function of Pt and Rh loading.  The NOX storage capacity was observed to decrease as 

follows: 4% Pt > 2% Pt ≈ 2% Pt-1% Rh > 1% Pt-0.5% Rh > 1% Rh for samples containing 

equimolar amounts of BaO on alumina.  The samples containing monometallic Pt performed 

much better when oxidation of NO to NO2 was examined.  To help understand why Rh 

negatively affected NO oxidation, the authors conducted XPS studies and found the surface 

coverage of Pt decreased by 70% in oxidizing conditions compared to reducing conditions.  

Conversely, Rh surface concentration increased by 35%.  This inferred that the bimetallic 

samples consisted primarily of Rh on the surface during lean conditions, which helped explain 

the poor performance, since Rh has been reported to be a poor NO oxidation catalyst [16,120].  

While initial inspection of Pt-Rh bimetallic catalysts inferred a negative influence for Rh 

incorporation, Amberntsson et al. [141] demonstrated that Pt-Rh bimetallic samples sustained 

much higher conversions when SO2 was present in the exhaust gas.  The bimetallic samples were 

not susceptible to deactivation like their monometallic counterparts, as seen in Fig. 8.  NO 

oxidation on monometallic Rh samples deactivated very quickly, but monometallic Pt and Pt-Rh 

samples were stable during the time frame of the experiment.  Conversely, NO reduction on 

monometallic Pt samples deactivated very quickly, whereas bimetallic Pt-Rh and monometallic 

Rh samples were stable.  The authors concluded that addition of Rh was essential for good 
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overall performance of NSR catalysts even though the amount of NOX stored was lower.  

Similarly, Schmeißer et al. and Kim et al. have found the incorporation of Rh leads to improved 

performance due to its high NOX reduction ability even though it suppresses NOX storage 

capacity [75,152]. 

 

  
Figure 8.  NO oxidation (a) and reduction (b) over (◊) 4 % Pt, (□) 2 % Pt, (∆) 2 % Pt - 1% Rh, 

(�)  1 % Pt – 0.5 % Rh, and (○) 1 % Rh catalysts containing equimolar amounts of BaO as a 

function of sulfur exposure, Amberntsson et al. [141]. 

 

Conversely, Breen et al. [16] performed a study using fast transient techniques and 

determined that the addition of Rh does not have a beneficial effect in NSR catalysts.  Their 

investigation employed realistic 60 s lean periods followed by 1.2 s rich periods and they found 

that NSR activity to decreased as follows: 1.6 wt % Pt > 0.5 wt % Pt – 0.8 wt % Rh > 1.1 wt % 

Rh > 0.5 wt % Pt.  However if the data was corrected for the percentage of metal atom exposed, 

the activity decreased as follows: 0.5 wt % Pt > 0.5 wt % Pt – 0.8 wt % Rh > 1.1 wt % Rh.  The 

authors explained these results by introducing operational regimes, where NSR performance 

could either be storage limited catalysts or reduction limited.  The 1.6 Pt and 0.5 Pt – 0.8 Rh 

samples were reduction-rate limited catalysts because they were incapable of completely 
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regenerating the storage component during rich periods and so conversion decreased with 

cycling time.  The monometallic Rh catalyst was the only sample with a high enough reduction 

activity to completely regenerate the catalyst, but was limited by the storage-rate during lean 

phases.  In this case, conversion of NOX was low but remained constant with cycling time.  

While the study by Breen et al. [16] indicated low activity for Rh containing NSR catalysts, it 

should be noted that the authors excluded the role of sulfur and the bimetallic catalyst tested 

contained a molar ratio of 0.84 for Pt:Rh, respectively.  The low ratio of Pt to Rh could 

exacerbate surface enrichment of Rh on the surface of Pt during lean periods, as observed by 

Amberntsson and coworkers [141].  Several surface science investigations reported diffusion of 

Rh into Pt particles even at room temperature [157–159], which further demonstrates that 

interconversion between Pt rich and Rh rich surfaces in different environments may be facile and 

should be considered when designing bimetallic catalysts.  The ratio of Rh to Pt was also quite 

high in comparison to formulations typically employed for commercial catalysts [139]. 

1.3.3.2 STORAGE MATERIALS 

The storage component is usually selected from alkali metals and/or alkaline earth 

metals.  Matsumoto [8,160] demonstrated that NOX storage increased as the electronegativity 

decreased, but hydrocarbon conversion increased as the electronegativity increased.  Fig. 9 

demonstrates the inverse relationship between the NOX storage ability and hydrocarbon (HC) 

conversion as a function of electronegativity. 
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Figure 9.  NOX storage capacity and hydrocarbon conversion measurements for some alkali and 

alkaline earth elements including: Cs, K, Na, Ba, and Mg, Takeuchi and Matsumoto [160]. 

 For these reasons, considerable efforts have been devoted to Ba as a storage component 

because it has desirable properties when examining both the lean and rich phases of NSR 

operation [21,22,32,39,61,73,94,100,161–163].  Recently, there has been interest in K because it 

may offer higher storage capacity [160], help stabilize stored nitrogen oxide species [164] and 

have better interaction with Pt [165].  Other storage materials include Li
 
[166,167], Mg 

[163,167–170], Ca [167,169,170], Sr [169,171–173], and Na [167,174–177].  When considering 

these different storage materials, primary questions of concern include: (i.) Which storage 

material offers the best performance when sulfur resistance, thermal stability, NOX storage 

capacity, HC conversion, and selectivity to N2 are all considered? (ii.) What is the optimum 

loading of that storage material and what is the nature of the storage material therein? (iii.) How 

strongly does the storage material store NOX and what types of species are present on the 

surface? (iv.) How does the metal-storage material interface affect the storage?  The following 

two subsections will focus on the current understanding of these questions.   

BA CONTAINING NSR MATERIALS 

 Ba represents the most commonly used element as a NOX storage material.  The optimum 

Ba loading has been reported as 6-12 wt % Ba
 
[178], 16-23 wt % Ba [179]

 
and 23 wt % Ba [73].  
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Generally higher amounts of Ba are capable of storing more NOX, but loadings higher than 10 

wt% can negatively affect noble metal dispersion [73,179].  Unfortunately, direct comparison 

between studies can be difficult because a wide range of loadings have been used: e.g., 8 wt% 

BaO/BaCO3
 
[31], 8.3 wt%  Ba [29], 9 wt% Ba

 
[32], 13 wt% BaO [94], 16.3 wt% Ba [61], 17 

wt% Ba [21], 18 wt% BaO [94], 20 wt% BaO [22], and concentrations up to 30 wt % Ba [73].  

These samples will most likely exhibit different distributions and dispersions of Ba and/or 

differences in morphology of the Ba present on the surface.  For example, Piacentini et al. [161] 

performed a study using XRD and TPD to examine the effect of varying the Ba loading from 4.5 

to 28 wt % and concluded that the chemical nature of Ba was dependent on loading.  They 

observed no evolution of CO2 during TPD for Ba loadings of 4.5 wt %., but saw evolution of 

CO2 in all samples with loadings of 9 wt % or higher.  Fig. 10 depicts the observed changes in 

the chemical nature of Ba as a function of loading, where LT-BaCO3 corresponds to desorption 

temperatures of 400-800°C and HT-BaCO3 corresponds to bulk-like BaCO3 with desorption 

temperatures approaching 1050°C.  XRD patterns indicative of crystalline BaCO3 were observed 

in samples with loadings of 16.7 wt % and higher. 

 Lietti et al. [39] also observed diffraction patterns indicating the presence of both 

monoclinic and orthorhombic BaCO3 after calcination of a Pt/Ba/Al2O3 (1/20/100 w/w) at 

500°C, but noticed with subsequent lean-rich cycling (lean: NO+O2; rich: H2) BaCO3 was 

exchanged for BaO and/or Ba(OH)2.  In summary, researchers have reported that NSR catalysts 

contain only BaO [100,162], only BaCO3
 
[27] and mixtures of BaO and BaCO3 [163,180].  

Differentiating between Ba phases is important because thermodynamic calculations infer 

BaCO3 to be a relatively inactive storage component due to the higher stability of barium 

carbonates over barium nitrates, if bulk-like properties are assumed [44].  However, these 
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calculations do not account for support interactions with the dispersed compounds.  As shown 

previously, these interactions can be significant, especially at lower loadings of Ba [161].  Cant 

and Patterson [32] concluded that CO2 has no effect on NO2 uptake, but others [29,44,45,181–

183] reported a negative effect for CO2 on the storage of NOX.  Since the active storage 

component is most likely BaO [44,47,184,185], but the catalyst may also contain significant 

amounts of BaCO3 [27,39,161,163,180], it is important to establish a mechanism by which 

NO/NO2 interacts with BaCO3 to form BaO and/or Ba(NO3)2, especially in the presence of 

excess CO2 because CO2 is always going to be present in exhaust environments.  Broqvist et al. 

[47] attempted to do so in a DFT study and they demonstrated decarbonation of the surface to be 

promoted by the presence of NO2 and argued that forming a NO3
2-

 species significantly reduces 

the energy cost for CO2 desorption.  Conversely, Sedlmair et al. [31] only noticed decarbonation 

of the surface if NO was present and NO2 was not observed to facilitate decomposition of 

supported barium carbonates. 

 

Figure 10.  Pictorial representation of the chemical nature of Ba on Al2O3 at different loadings, 

Piacentini et al. [161]. 
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 In summary, characterization of calcined Pt/BaO/Al2O3 samples using XRD and FTIR 

have repeatedly shown the presence of a “bulk-like” BaCO3 phase [34,37,161,179].  However, 

Frola et al. [179] and others have demonstrated that this phase undergoes a morphological 

transformation during NSR cycling treatments, in the absence of additional gas phase CO2, 

leading to the formation of highly dispersed BaO [21,34,45,65].  Zhou et al. [186] demonstrated 

that calcining supported Ba(NO3)2 in air leads to the formation of BaCO3, which indicates the 

reversibility of the exchange between barium nitrate and barium carbonate. 

 Storage of NOX on BaO/BaCO3 occurs through the formation of surface nitrites, surface 

nitrates and bulk-like nitrates depending on the NOX source (i.e., NO, NO+ O2, or NO2), time of 

exposure, temperature and the presence of water [21,22,31,33,34,43,187].  For example, 

Seldmair et al. [31] exposed a Pt/BaO/Al2O3 (1/8/100 w/w) to NO at 50°C and observed 

formation of linear and bridging nitrites; increased exposure time led to formation of peaks 

corresponding to N-coordinated nitrites on alumina (1537 cm
-1

), monodentate nitrites (1340 and 

1440 cm
-1

), linear nitrites on Ba (1422 cm
-1

) and hyponitrites (1380 cm
-1

).  Exposure to NO2 at 

50°C resulted in the formation of linear barium nitrites (1419 cm
-1

), bidentate nitrites (1203 and 

1332cm
-1

), chelating bidentate surface nitrates on Al2O3 (1564 cm
-1

), and monodentate nitrates 

on BaO (1429 and 1332 cm
-1

).  Nova et al. [21,34,40] did not observe the formation of nitrites 

when a Pt/Ba/Al2O3 (1/20/100 w/w) was exposed to NO2 at 350°C, but many others observed the 

formation of both nitrites and nitrates upon exposure of NO2 [27,31,33,41].  Exposure of a 

Pt/BaO/Al2O3 (1/8/100 w/w) to NO + O2 at 50°C led to the formation of surface nitrites on Ba 

(1200cm
-1

), linear Ba nitrites (1419 cm
-1

), bridging bidentate nitrates on Al oxide (1619 cm
-1

), 

chelating bidentate surface nitrates (1561 and 1290 cm
-1

), linear nitrites on Al (1479 cm
-1

), and 

monodentate nitrates on BaO (1424 and 1332 cm
-1

) [31].  The thermal stability of the adsorbed 
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NOX species increased as follows: Al nitrites (linear, N-coordinated) < Ba nitrites (linear, 

monodentate) < Al nitrates (bridging bidentate, chelating bidentate) < Ba hyponitrites < Ba 

nitrates (monodentate).  Therefore, under realistic exhaust conditions the stored species are most 

likely in the form of bidentate nitrates on alumina, monodentate nitrites on alumina, monodentate 

nitrates and nitrites on barium, and bridge bonded bidentate nitrites over barium 

[21,22,27,33,34,41,112], as summarized in Table 2. 

Additionally, Szanyi et al. [188] demonstrated that both bidentate (surface: 1300 and 

1574 cm
-1

) and ionic (bulk: 1320 and 1420 cm
-1

) nitrates are formed in BaO-containing samples 

and that the relative intensity of the ionic nitrates increase with BaO coverage.  They also 

observed a transition from bidentate nitrates to ionic nitrates with increasing temperature in a 20 

wt % BaO/Al2O3 sample.  Conversely, a decrease in ionic nitrates was observed for the case of 

an 8 wt % BaO sample.  Desikusumastuti et al. [50] also observed the formation of bulk 

Ba(NO3)2 from surface nitrites and nitrates at elevated temperatures.  The study was performed 

using varying sizes of BaAl2xO1+3x particles, which have previously been regarded as a source of 

deactivation for the BaO [162].  The authors demonstrated that Ba
2+

 ions could be extracted from 

the larger barium-aluminate particles to form Ba(NO3)2 and deactivation due to the formation of 

BaAl2O4 could be reversible.  Hodjati et al. [189,190] also mentioned BaAl2O4 particles to be a 

viable NOX storage material because they are unable to interact with CO2 and may have some 

resistance to sulfur poisoning.  Another factor known to affect the size of these particles is the 

presence of water.  Szanyi et al. [187,191] demonstrated using TPD, XRD and FTIR that nitrated 

(NO2 exposure) samples exposed to water form crystalline Ba(NO3)2 particles, which 

decomposed to highly dispersed BaO in the range of 640-940 K.  Figs. 11 and 12 demonstrate 

the influence of water and temperature on stored NOX. 
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Table 2. FTIR Band Assignments for Nitrite/Nitrate Species on Ba/Al2O3 NSR Catalysts 

Structure Assignment Wavenumber (cm
-1

) Ref. 

    
Adsorbed on Al    

 
Bridging bidentate nitrate 

1627-1619, 1180 -

1260 
[31,33,34] 

 

Chelating bidentate nitrate 1569-1561, 1180-1290
 

[31,33,34] 

 Linear nitrite 1537, 1480
*
,  1083 [31,33] 

 
Bridged bidentate nitrite 1300, 1200-1230

 
[31,33,34] 

 
Bridged N-coordinated nitrite 1522, 1160

 
[31,33] 

Al
+
NO3

- 
Bulk Nitrate 1397 [33] 

Al
+
NO

- 
Hyponitrite 1343 [33,34] 

Adsorbed on Ba    

 

Monodentate nitrite 1440, 1340 [31,33,34] 

 
Monodentate nitrate 1429-1422, 1332 [31,33] 

 Linear nitrite 1422-1419 [31,33] 

 

Bridged bidentate nitrite 1300, 1230 [31,34] 

Ba
+
NO

- 
Hyponitrite 1316 [33,34] 
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Figure 11. The effect of temperature on the 

morphology of BaO/Al2O3 NSR catalysts, 

Szanyi et al. [192,193]. 

 

Figure 12. The effect of water on the 

morphology of BaO/Al2O3 NSR catalysts, 

Szanyi et al. [187,191]. 

 

 Interaction of COX on Ba has also been studied because COX and NOX could be 

competing for the same storage sites [37,179].    Epling et al. [37] studied Pt/BaO/Al2O3 -

(2/20/100 w/w) exposed to CO2 at room and observed formation of surface Al- and/or Ba-

bicarbonates (1232, 1448 and 1650 cm
-1

), bidentate carbonates (1349 and 1598 cm
-1

), CO bound 

to Pt (2030 cm
-1

) and adsorbed CO2 (2347 cm
-1

).  Heating led to a decrease in the peaks 

corresponding to bicarbonates, while the peak at 1448 cm
-1

 remained the same.  This indicated 

that a stable, bulk-like barium carbonate phase had formed.  A new peak at 1402 cm
-1

 also 

appeared and was assigned to unidentate carbonates.  Exposure to CO + O2 at RT led to a 

prominent band at approximately 2067 cm
-1

, but the rest of the spectrum remained fairly clean.  

Heating resulted in formation of bidentate carbonates and bulk-like barium carbonate and closely 

resembled the spectra for the CO2 adsorption experiments.   At higher temperatures, the primary 

surface species formed were Ba-formates (1359, 1369 and 1585 cm
-1

).  Exposure to CO at higher 

temperatures resulted in substantially lower carbonate formation than in the case of CO2 and CO 

+ O2, but formation of bulk like species was still observed, which demonstrated the tendency for 

BaO to form bulk like carbonates.  H2O was observed to facilitate interconversion between the 
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adsorbed species.  In a room temperature study by Frola et al. [179], exposure of CO2 led to 

bands assigned to surface carbonates, bridged carbonates on Ba and Al, bridged, chelating and a 

relatively small amount of monodentate carbonates on Ba sites, with relative intensities related to 

Ba loading.  Interestingly, Frola et al did not notice the reformation of the bulk-like or 

orthorhombic BaCO3 in the time scale of their experiments, which could point to an active phase 

comprised mainly of less stable surface carbonates.  Table 3 depicts FTIR band assignments for 

carbon and sulfur containing species on Ba. 

Table 3. FTIR Peak Assignments for C and S containing Species on Ba/Al2O3 NSR 

Catalysts 

Assignment Wavenumber (cm
-1

) Ref 

   
Carbon Containing Species   

Unidentate carbonate 1747, 1403 [37] 

Bicarbonate 1656, 1448, 1238 [37] 

Bridged carbonate 1620, 1280 [179] 

Bidentate carbonate 1598-1530, 1350 [37,179] 

Formate 1585, 1398-1357 [37] 

Monodentate carbonate 1460, 1320 [179] 

Isocyanates 2169, 2230 [37,179] 

Adsorbed CO2 2350 [37] 

Sulfur Containing Species   

Hydrogen-bonded sulfites 3638, 3570, 972 [35] 

Tri- coordinated sulfates on alumina 1318, 1040 [22,35,36] 

Bulk barium sulfate 1249 1168 [22,35,36] 

Surface bidentate barium sulfate 1107, 1060 [22,35,36] 

 One disadvantage of using Ba as a storage component is its high susceptibility to sulfur 

poisoning [6].  Mahzoul et al. [121] reported that BaO, alumina and ceria exposed to SO2 formed 

various sulfate species, which in the case of BaSO4 did not decompose until approximately 
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1000°C.   Engstrom et al. [105] observed the degree of deactivation to be proportional to the 

amount of sulfur exposed.  Fridell et al. and others have observed sulfur deactivation to be more 

severe during the rich phase [35,56,103,194–196].  Sedlmair et al. [36,102] demonstrated the 

appearance of bands at 1120 and 1060 cm
-1

 after 1 min of exposure, which were assigned to the 

S-O stretching vibrations of bidentate sulfates on BaO.  After 5 min, bands at 1350 1248, 1155 

and 1040 cm
-1

 appeared in addition to the bands in the range 1060-1000 cm
-1

.  The bands at 1248 

and 1155 were assigned to bulk barium sulfate, while the bands at 1350 and 1040 cm
-1

 were 

assigned to the S-O vibration of tri-coordinated sulfate species on Al2O3.  Flushing in He and 

reduction in propylene resulted in negligible changes, which demonstrated the high stability of 

the formed sulfate species.  Others have also seen the formation of these surface and bulk sulfur 

species on Ba and Al2O3 [22,35,194,196].  Furthermore, BaO was observed to form BaSO4 even 

in the absence of gas phase oxygen [22,108].  Courson et al. [30] demonstrated that regeneration 

of sulfur poisoned NOX traps occurred more readily if the overall sulfur exposure during the 

poisoning process was lower. When the extent of poisoning was less than 30% of the BaO, the 

initial NOX storage capacity could be completely recovered using an extended rich environment.  

However if the extent of poisoning was high, it was impossible to recover the initial NOX storage 

capacity.  Scheier et al. [197] determined that regeneration occurred more readily in rich 

environments (λ= 0.99-0.94), with λ= 0.94 showing the highest sulphate removal, and at higher 

temperatures (660-720°C).  Increasingly rich environments at higher temperature also led to 

higher concentrations of effluent COS and H2S.  The authors suggested optimization of λ and the 

regeneration temperature to obtain selective desorption as SO2.  In summary, during lean 

conditions SO2 can be oxidized over Pt to form surface and bulk barium sulfates[111], but SO2 

can also directly react with BaO to form BaSO4 [22,71,108].  During rich periods, SO2 was 
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reduced to form Pt-S and BaS [35,36,71,108], which can then be re-oxidized during subsequent 

lean conditions to form bulk like BaSO4 [35,102,196].  Furthermore, cycling between lean and 

rich environments in the presence of sulfur seemed to preferentially poison sites near the Pt/BaO 

interface, which could explain the rapid deactivation of Ba containing NSR catalysts since the 

Pt/BaO interface is an important property of these materials, as discussed previously 

[36,71,102,111].   

POTASSIUM CONTAINING NSR MATERIALS 

Potassium is the 2
nd

 most commonly used storage material in NSR catalysts.  In 

comparison to Ba, K has been reported to exhibit higher storage capacity at higher temperatures, 

but lower storage capacity at lower temperatures [198].  Choi et al. studied the low temperature 

storage region using spaci-MS techniques to try and elucidate why K performance was inferior to 

Ba at low temperatures [19].  They observed the WGS reaction to have little impact on 

Pt/K/Al2O3 samples and suggested that CO may poison Pt sites below 200 °C.  Later, Choi et al. 

found Pt/K/Al2O3 to be active for the WGS reaction, but only after all gas phase O2 had been 

consumed by oxidation of CO to CO2 [199].  Additionally, CO oxidation caused a considerable 

exotherm which raised the storage-phase temperature.  Primary NOX release/reduction was 

vigorous and proceeded shortly after the rich period began with small NO or N2O slip.  

Secondary NOX release/reduction occurred at later times and produced mainly NH3.  Production 

of NH3 could be explained by in situ generation of H2 though the WGS reaction, which then 

reacted with NOX over Pt to form NH3.  One possible reason for the differences at low 

temperatures over Pt/K/Al2O NSR catalysts is the proposed increase in the thermal stability of 

nitrites/nitrates on K [198].  Park et al. compared BaO/Al2O3 and K2O/Al2O3 using NO2-TPD 

measurements and observed similar NO2-TPD profiles, but co-impregnation of K and Ba did 
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induce a shift to higher temperatures for desorption of NOX, which indicated that co-loading K 

and Ba could increase the stability of stored nitrates.  Unfortunately, the Ba loading was only 6.8 

wt % and the K loading was only 1.5wt%, which is much lower than typical NSR catalyst 

formulations.  More recently Matarese et al. [200] reported that thermal release of NOX from a 

Pt/K/Al2O3 catalyst began around 350 °C, which is very similar to values reported for the 

Pt/Ba/Al2O3 catalysts [34,201]. 

Numerous FTIR/DRIFTS studies have been conducted for Pt/K/Al2O3 samples 

[146,165,198,202–208].  Above 200 °C, storage occurred as an ionic nitrate (1380 cm
-1

) on K 

and bidentate nitrates (1535 and 1320 cm
-1

) on Al2O3.  Below 200 °C, storage occurred as an 

ionic nitrite on K and a nitrite species on Al2O3.  These nitrite species were later oxidized to 

nitrates by gas phase NO2.  Toops et al. [198], Prinetto et al. [165] and Liu et al. [206] all 

observed similar trends for NOX adsorption as a function of temperature.  At lower temperatures, 

storage occurred mainly as nitrites; but as the temperature was increased, storage occurred 

mainly as ionic nitrates on K.  Thermal desorption of nitrates began at approximately 300 °C and 

all nitrites/nitrates were completely removed by 500 °C.  These results are in agreement with the 

previously mentioned study by Park et al [164], as shown in Figs. 13 and 14.  In this case, Liu et 

al. [206] used a TiO2-ZrO2 supported samples, whereas Toops et al.
 
[198] and Prinetto et al.

 

[165] used Al2O3 supported samples, but generally the trends were the same.   
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Figure 13.  NO2 evolution profiles for Ba 

and/or K supported on Al2O3 where (a) Pure 

Al2O3, (b) 6.7 wt % Ba/Al2O3, (c) 1.6 wt 

K/Al2O3, and (d) 6.7 wt % Ba and 2.7 wt % 

K/Al2O3, Park et al. [164]. 

 

 

Figure 14.  In situ DRIFTS spectra of 

Pt/K/TiO2-ZrO2 after exposure to 400 ppm NO 

+ 5% O2 for 10 min at temperatures of 100, 

200, 300, 350, 400 and 500 °C, Liu et al. [206].  

 

Lesage et al. [205] and Castoldi et al. [202] proposed that NOX was stored according to a 

“nitrite” route, where NO2 adsorbed as a nitrite and was then further oxidized to a nitrate by 

either gas phase NO2 or O2.  Castoldi et al. [202] also proposed that NOX may be stored by a 

disproportionation route as previously observed in the case of Ba.  Toops et al. [198] go into 

more detail regarding NOX storage mechanisms on K, but generally their mechanisms fit into the 

two listed above.  Toops et al. [198] also proposed different types of K sites, as was the case for 

Ba [198,205,206].  Toops et al. [198] and Liu et al. [206] differentiated sites based on their 

proximity to Pt, whereas Lesage et al. [205] defined surface and bulk storage sites.  Generally, 

sites in close proximity to Pt were thought to be responsible for rapid NOX storage since Pt can 

oxidize NO to NO2.  Sites far from Pt, while capable of storage, were only significant during 

later times once all of the “fast” sites were filled.  The sites farther from Pt probably rely on 

disproportionation and dismutation mechanisms and are really not relevant to NSR catalysts 

unless NO2 is used as the NOX source or very long storage times are employed.  However, 
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disproportionation mechanisms are worth mentioning since they will always be operating 

simultaneously with the Pt-assisted NOX storage mechanism and will therefore constitute some 

fraction of the total storage observed.  On the contrary, Lesage et al. [205] argued that site 

differentiation based on location of Pt particles was unclear and proposed that storage initially 

occurred rapidly on surface potassium sites, where storage was controlled by the rate of NO 

oxidation.  At later times, NO2 must diffuse into the bulk for storage to occur, which was a slow 

process and led to dramatic NOX slip.  

The morphology of Pt/K/Al2O3 catalysts was investigated by Prinetto et al. [165]  XRD 

patterns of a 1% Pt/ 5.4% K/Al2O3 (w/w) catalyst exhibited several low intensity peaks which 

inferred contributions from monoclinic K2CO3 and cubic K2O.  Subsequent FTIR experiments 

revealed strong peaks at 1570 and 1350 cm
-1

, which were characteristic stretching frequencies 

for surface bidentate carbonates.  A strong peak at 1420 cm
-1

 was not observed.  Bulk K2CO3 -

only exhibited one stretching frequency at 1420 cm
-1

.  Furthermore, outgassing at 823 K or 

heating in NO2 at 623 K followed by outgassing at 823 K was sufficient for removal of the peaks 

at 1570 and 1350 cm
-1

.  This inferred that carbonate species stored on K/Al2O3 at room 

temperature have low stability and were removed easily.  The FTIR is in agreement with XRD 

patterns, where small amounts of K2CO3 were present on the samples before reaction.  K also 

stabilized Pt, where sintering of Pt particles after reaction was lower on Pt/K/Al2O3 than 

Pt/Al2O3. 

Direct comparisons between Pt/Ba/Al2O3 and Pt/K/Al2O3 catalysts have been reported by 

several groups [136,200,202,208,209].  Pieta et al. [208] and Matarrese et al. [200,209,210] 

reported Pt/K/Al2O3 to be a better catalyst for simultaneous soot removal and NOX storage and 

reduction, but both catalysts were able to oxidize soot.  Sakamoto et al. [211] compared K and 
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Ba supported catalysts on a millisecond time scale and revealed that NOX release from 

Pt/K/Al2O3 samples was faster than Pt/Ba/Al2O3, which inferred Pt/K/Al2O3 to be more active 

during reduction while both samples demonstrated similar activity during storage.  Alternatively, 

Castoldi et al. [202] observed that Pt/K/Al2O3 and Pt/Ba/Al2O3 catalysts had different activity if 

H2 or NH3 were used as reductants.  Pt/K/Al2O3 was reported to be more active when NH3 was 

used, while Pt/Ba/Al2O3 was more active when H2 was used.  The relative activity of the stored 

NOX species and metal support interactions (i.e. Pt-K vs. Pt-Ba) were both suggested as a 

potential causes for this behavior.  FTIR data supported the previous case, where the relative 

concentration of ionic nitrates to bidentate nitrates depended on the storage material, but higher 

activity at lower temperatures on Pt/K/Al2O3 during reduction may infer the latter case to be 

important as well.  On the other hand, Prikhodko et al. [136] observed no significant differences 

between commercial Pt/K/Al2O3 and Pt/Ba/Al2O3 (formulations also included Pd, Rh, Ce, Mg 

and Zr) catalysts if longer regeneration times were used.  Therefore, differences in Pt/Ba/Al2O3 

and Pt/K/Al2O3 may be irrelevant during actual operation. 

Potassium, like barium, was also susceptible to sulfur poisoning.  Toops et al. [212] 

reported that deactivation due to sulfur exposure was dependent on the temperature and the time 

of exposure.  Exposure of the LNT catalyst at 200 °C showed mild deactivation even after only 

15 hours of exposure.  However, NOX storage capacity at this temperature was also low.  At 400 

°C, sulfur deactivation was rapid and the catalyst was completely deactivated after only 9 hours 

of exposure.  Temperature programmed regeneration under rich conditions (5600 ppm CO, 3400 

ppm H2, 5% CO2 and 5% H2O) up to 800 °C mostly restored catalytic activity, which was not 

always true for Ba/Al2O3 samples [30].  Others have also shown deactivation of K containing 

catalysts in the presence of SO2, where doping of Al2O3 into TiO2-ZrO2 to form a 
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nanocomposite-structure support seems to be especially promising for sulfur tolerance and 

removal.  Nanocomposite-type supports are discussed in the follow section, where Fig. 16 

represents the general idea [155,206,213–216].  Dissolution of K2O in water could also be a 

problem since automotive catalysts can experience very high levels of water both from engine 

exhaust and ambient environmental conditions [164].  Lastly, Pt/K2Ti2O5, Cu/K2Ti2O5, Pt-

K/MgAl2O4, [Ca24Al28O64]
4+ .

4O
-
/K, KXGaXSn8-XO16, K/La2O3 and Pt/K-βAl2O3/Pt (electro-

catalyst) have been investigated for NSR applications, but the results were omitted for brevity
 

[130,131,217–223]. 

1.3.3.3 SUPPORTS 

The support in an NSR catalyst primarily provides a surface to disperse precious metal 

and storage components, but it can also help with storage capacity, reduction activity, sulfur 

durability, thermal stability and may alter the catalytic activity of the metals or storage 

component.  Alumina is by far the most commonly used support, but CeO2, ZrO2, TiO2, MgO, 

varying mixtures of those elements, hydrotalcites and perovskites have all been tested for 

improved catalytic activity in NSR performance. 

SINGLE OXIDE SUPPORTS 

The first NSR catalysts were composed of Pt and Ba deposited on γ-Al2O3 [8].  Alumina 

was chosen because it offered a high surface area and methods for increasing the thermal 

stability and sulfur tolerance through incorporation of BaO, La2O3 and SiO2 with and without 

heat treatments were previously established [7].  Shimizu et al. [224] demonstrated that NOX 

storage and reduction rates could be altered simply by changing the support.  NOX storage 

capacity for Pt and Ba on various supports decreased as follows: MgO > Al2O3 > ZrO2 > SiO2.  

However, reduction activity for Pt and Ba on various supports decreased as follows: Al2O3 > 



www.manaraa.com

 

44 

 

ZrO2 > SiO2 > MgO.  The authors suggested that the inherent acid – base properties of the 

support either increased or decreased NOX storage and reduction activity.  Therefore, alumina 

exhibited a good compromise between NOX storage and reduction.  Corbos et al. [225] observed 

similar trends for mixed oxides.  In addition to providing a surface to disperse Ba, alumina is 

also capable of storing some NOX, as Lindholm et al. observed significant amounts of NOX 

storage on Pt/Al2O3 samples with maximum storage occurring at 200 °C [182].  Westerberg et al. 

[33] assigned these species to monodentate, bidentate and bridged nitrites and nitrates on 

alumina and similarly found alumina to be an important storage component below 300 °C.  Cant 

et al. [31,32] also observed storage on Al2O3, but the thermal stability of these species was much 

lower than those formed on Ba.  Piacentini et  al. [161,226–228] studied the thermal stability of 

carbonate and nitrate species on Pt – Ba samples supported on Al2O3, ZrO2 and SiO2 and found 

that the support significantly affected carbonate and nitrate stability on Ba.  Decomposition of 

BaCO3 supported on Al2O3 and SiO2 began at around 250 – 300 °C, which was surprisingly low 

in comparison to the bulk decomposition temperature of approximately 800 °C.  However, 

BaCO3 supported on ZrO2 decomposed primarily between 820 – 1000 °C, which was more 

similar to unsupported BaCO3.  In later works, Piacentini et al. [161,227,228] studied CeO2 in 

comparison to SiO2, ZrO2, and Al2O3 and performed a detailed study on Pt-Ba/Al2O3 catalysts.  

They concluded that Ba(NO3)2 and BaCO3 exhibit different thermal stabilities based on the 

support and loading of Ba.  Formation of a low temperature BaCO3 phase (LT-BaCO3 – 

decomposition of BaCO3 from 400 – 800 °C) was related to the storage activity for different 

samples.  This phase was deemed the most relevant to NOX storage and reduction because Ba is 

able to form stable NOX species at temperatures of interest, but does not form bulk like BaCO3.  

In summary, Pt and Ba supported on CeO2 and ZrO2 formed higher amounts of LT-BaCO3 at 
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lower loadings, whereas Pt and Ba supported on Al2O3 and SiO2 required higher loadings to form 

LT-BaCO3.  SiO2 only formed BaCO3 species at the highest loadings.  The results from these 

studies are summarized in Fig. 15.  Additionally, Cheng et al. [229] performed DFT calculations 

for NO2 adsorption on unsupported BaO clusters and BaO clusters supported on γ-Al2O3.  Their 

results indicated a synergistic effect between BaO and Al2O3 for NO2 adsorption.  They 

concluded that NO2 preferentially binds to interfacial regions between BaO and Al2O3 for sub-

monolayer coverages of BaO.  While Pt-Ba/Al2O3 systems make good NSR catalysts, they are 

also susceptible to deactivation through formation of BaAl2O4 [162,192] or poisoning by sulfur 

[35,71,103,105,108,194,195].  Therefore, other single oxide and mixed-oxide supports have been 

investigated for increased thermal stability and sulfur tolerance. 

Recently, CeO2 has been suggested as a viable alternative to Al2O3.  Maeda et al. [230] 

demonstrated that NOX storage capacity decreased as follows for 1Pt/20 Ba (wt%) supported on 

CeO2 > Ce0.5Zr0.5O2 > Al2O3 > ZrO2 > TiO2 > SiO2.  However, reduction activity proceeded in 

the reverse order, which is in general agreement with others in the literature [224,225].  In 

previous works, Piacentini et al. [161,226–228] studied the effect of Ba loading on different 

supports and concluded that optimum Ba loading changed based on the support used.  Therefore, 

CeO2 could be excellent support for maximum NOX storage efficiency.  Unfortunately, Maeda et 

al. [230] found CeO2 to be a poor support when reduction activity was studied.  Poor reduction 

activity on CeO2 was attributed to 1.) the basic nature of the support, which stabilized surface 

and bulk nitrates leading to longer regeneration times and 2.) high oxygen storage capacity, 

which provided facile oxygen during reduction and led excessive to consumption of reductants 

that could otherwise be used for the reduction of NOX.   
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Figure 15.  CO2 evolution profiles of BaCO3 decomposition formed during calcination at 500 °C 

of the Ba(Ac)2 precursor for varying loadings of Ba on different supports where (A) Pt-Ba/CeO2, 

(B) Pt-Ba/ZrO2 and (C) Pt-Ba/Al2O3.  Pt-Ba/SiO2 not shown, Piacentini et al. [161,228]. 

 

Previously, Martin and Duprez [231] investigated the acidity and basicity of many 

support materials.  CeO2 was characterized as a very basic support with little acidity, whereas 

alumina has both acidic and basic properties.  This helps explain why alumina exhibits good 

characteristics for NSR operation.  Interestingly, 12 wt % CeO2 doped alumina still retained most 

of its acidic properties, but also increased in basicity.  Therefore, CeO2 may be more beneficial 

as a promoter than as a support (this aspect will be discussed in section 1.3.3.4 on Promoters).  

While CeO2 suffers from reduction activity, it has gained support in the literature because it has 

(A) 

(B) 

(C) 
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been suggested to increase sulfur tolerance, promote the WGS reaction and stabilize Pt particles 

against sintering during high temperature excursions [101,109,151,232–234].  Kim et al. [109] 

observed BaS formation in Pt-BaO/CeO2 to be much lower than Pt-BaO/Al2O3 samples, which 

implied that CeO2 suppressed the formation of these crystallite species.  However, the formation 

of sulfur species with lower oxidation states was enhanced.  H2-TPRX evolution profiles showed 

negligible formation of H2S, which inferred the H2S produced from reduction of BaSO4 was 

readily re-adsorbed by CeO2 to form ceria-sulfur complexes.  The proposed mechanism was in 

agreement with S XANES spectra, where the initial and final intensities of sulfur compounds 

remained fairly constant.  Kwak et al. [101] also observed better sulfur tolerance for Pt-

BaO/CeO2 samples and excellent resistance to Pt sintering.  Casapu et al. [232,233] observed 

that sintering of Pt was prevented due to formation of a temporary perovskite that anchors Pt to 

the support.  At lower temperatures in oxidizing environments (600 – 700 °C), Pt reacted with 

Ba and CeO2 to form BaPtO3.  At higher temperatures (> 800 °C), formation of the double 

perovskite Ba2PtCeO6 was observed.  Reduction of these species occurred from 130 – 210 °C, 

which demonstrated the reversibility of the thermal aging.  An additional advantage of CeO2 is 

that BaCeO3 formed at high temperature were easily decomposed by CO2 unlike BaAl2O4 

[180,234].  Unfortunately, Ba supported on CeO2 samples in the presence of CO2 may form very 

stable bulk-like BaCO3 species.  Lastly, CeO2 has been suggested as a potential storage 

component.  Svedberg et al. [235] found both Al2O3 and Pt/CeO2/Al2O3 stored considerable 

amounts of NOX in the region of 100 – 200 °C, but still only half as much as Pt/BaO/Al2O3 

systems.  Philipp et al. [236] observed bands at 1162, 1277, 1067 and 823 cm
-1

 (chelating 

nitrites), 1021 and 974 cm
-1

 (cis-hyponitrites), 1097 cm
-1

 (trans-hyponitrites), and 792, 1322 and 
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1607 cm
-1

 (nitrates).  Philipp et al. [236] and others [235,237]proposed CeO2 to be a viable 

storage material at lower temperatures for lower Ba loadings. 

 SiO2 is generally regarded as a woefully inadequate support for NSR components.  

Piacentini et al. and others observed virtually no storage when Pt-Ba/SiO2 samples of varying Ba 

loading were exposed to NOX [224–228].  Alternatively, ZrO2, TiO2 and MgO have potential for 

good NOX storage-reduction properties.  Yamato et al. [238] studied TiO2 as a support because 

TiO2 is well known to be resistant to sulfur poisoning.  Li, Na, K, Cs, Sr, Ba and La were all 

tested as potential storage components for the Pt/TiO2 based system.  Pt-Na/TiO2 and Pt-K/TiO2 

performed best for both storage and reduction when SO2 was absent.  In the presence of SO2, 

only the Pt-Li2O/TiO2 samples activity remained unchanged.  All other samples suffered from 

deterioration of NO storage activity.  Although Pt-Li2O/TiO2 was outperformed by Na or K 

based catalysts in the absence of sulfur, it offered excellent sulfur tolerance not observed for 

other NSR catalysts.  ZrO2 is another promising support for NSR catalysts.  As previously 

mentioned, Shimizu et al. [224] determined ZrO2 to be less active than Al2O3 for NOX storage, 

but more active for reduction of NOX using H2.  However, Piacentini et al. [228] found ZrO2 to 

be less active for reduction of NOX, which was attributed to much lower surface areas of ZrO2 

supports.  Lastly, the storage mechanism for NOX on BaO/MgO systems was studied [239].  

Storage proceeded through formation of barium-nitro species that later transformed to nitrite 

and/or nitrate species.  This mechanism differs from the generally accepted mechanisms 

discussed in section 1.3.2.1 for Pt-BaO/Al2O3 systems.  The deviation may be explained by the 

high basicity of MgO supports.  Storage above 400 °C was observed, but was suppressed in 

comparison to lower temperatures.  Reduction with CO led to formation of thermally stable 

BaCO3, but transformation back to Ba(NO3)2 upon NO2 exposure was possible.  Albeit the 
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transformation required 90 min to complete, which was drastically longer than usual NSR lean 

operation times.  Therefore, accumulation of CO2 and subsequent deactivation may occur with 

increasing cycle time. 

MIXED OXIDES 

Many publications are devoted to investigation of various mixed oxides as supports.  

Generally, mixed oxides are of interest for several reasons including: 1.) they may promote 

higher NOX storage capacity or storage rate, 2.) increase reduction activity, 3.) stabilize catalytic 

components against thermal degradation processes and 4.) increase sulfur tolerance of the NSR 

catalyst. 

 The most common supports, other than Al2O3, are mixed oxides containing mixtures of 

two or more of the following materials: SiO2, CeO2, ZrO2, TiO2 and/or Al2O3.  Takahashi et al. 

[240] studied the influence TiO2, ZrO2 and mixtures of TiO2-ZrO2 and found that TiO2 

suppressed sulfur formation on supported Pt-K samples, whereas ZrO2 prevented solid phase 

reaction of potassium with the support.  At higher temperatures, ZrO2 rich supports performed 

better than TiO2 rich supports, but the opposite was true at lower temperatures.  Initially, Corbos 

et al. [241] determined storage capacity increased as follows: Pt/20Ba/Si < Pt/20Ba/Al5.5Si < 

Pt/10Ba/Al < Pt/5Ba/CeZr < Pt/30Ba/Al5.5Si < Pt/20Ba/Al < Pt/10BaCeZr.  Again, trends in 

basicity were used to explain storage capacity.  CO2 inhibited NOX storage for all catalysts, but 

the effect was more pronounced on more basic supports and with increasing temperature.  Water 

also had a detrimental effect, but the effect was observed more strongly for Al2O3 containing 

supports.  While Ce-Zr systems offered the highest storage capacity, realistic experimental 

conditions favored the Pt/20Ba/Al5.5Si sample.  In other works, Corbos et al. [225,241,242] 

studied the effect of sulfur and aging on similar sets of samples.  They found all samples were 
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negatively affected by sulfur, but could be regenerated after treatment in H2 at 550 °C. 

Interestingly, only the Pt/Ce0.7Zr0.3O2 sample was regenerated completely.  Additionally, 

Ce0.7Zr0.3O2 samples exhibited BaSO4 reduction temperatures around 100 °C lower in 

comparison to Al2O3 containing samples.  This led the authors to conclude that mixtures of CeO2 

and ZrO2 could provide better results when compared to conventional Al2O3 based systems when 

sulfur tolerance was considered.  Continued work on CeXZr1-xO2 mixed oxides predicted Ce rich 

samples to be particularly interesting because they are especially resistant to sulfur poisoning and 

produced very little NH3 during reduction, but the OSC of the materials did lead to higher 

consumption of reductants during reduction [243].  Other studies on CeO2-ZrO2/Al2O3[244], 

CeXZr1-xO2
 
[99], Al2O3 doped TiO2-ZrO2

 
[214] and TiO2-Al2O3

 
[166,245] have been performed 

in an attempt to further elucidate the role of the support and/or how mixtures of support materials 

can provide improved results over Al2O3 supported samples.  Preliminary results indicated 

positive effects for mixed oxide supports over single oxide options.  One particularly interesting 

example of a novel support combined ZrO2, TiO2 and Al2O3 to form a thermally stable, sulfur 

resistant nanocomposite [155,213,215].  Imagawa et al. [155] prepared these nanocomposite 

samples using conventional co-precipitation techniques.  Al(NO3)3 
. 
9 H2O, Zr(NO3)2 

. 
2 H2O and 

TiCl4 were dissolved in ion exchanged water and then an ammonia containing solution was 

added for co-precipitation.  The synthesized nanocomposite of Al2O3 and ZrO2-TiO2 (AZT) was 

then compared to physical mixtures of Al2O3 and ZrO2-TiO2 prepared in the same way.  The 

nanocomposite samples were much more thermally resistant than samples prepared by physically 

mixing.  Al2O3 was suggested to act as a diffusion barrier against aggregation of ZrO2-TiO2 

particles at high temperatures.  Fig. 16 depicts this concept and provides supporting TEM 

micrographs of the nanocomposite.  Further work by Imagawa et al. focused on sulfur durability 



www.manaraa.com

 

51 

 

of AZT and Ti-doped AZT [155,213].  They found catalysts consisting of Pt, Rh, Ba, and K 

supported on AZT were much more resistant to both sulfur poisoning and thermal aging than 

physical mixtures of Al2O3 and ZrO2-TiO2.  Additionally, Ti-doped AZT samples offered 

increased sulfur tolerance in comparison to the AZT supported samples.  

 
 

Figure 16. (A) Theoretical concept describing differences in aggregation phenomena for a 

physical mixture of Al2O3 and ZrO2-TiO2 vs. a nanocomposite of Al2O3 and ZrO2-TiO2, (B ) FE-

TEM micrograph for nanocomposite of Al2O3 and ZrO2-TiO2 after calcination at 1173 K and (C) 

FE-TEM micrograph for physical mixture of Al2O3 and ZrO2-TiO2 after calcination at 1173 K, 

Imagawa et al. [215]. 

 

Hydrotalcites and perovskites are another type of support material applied to NSR 

catalysts.  Centi et al. [246] studied hydrotalcite (HT)-type compounds impregnated with Pt 

and/or Cu and found they generally outperformed Pt-Ba/Al2O3 catalysts prepared by incipient 

wetness impregnation.  The HT catalysts were prepared using a commercially available 

precursor with an atomic ratio of 66:34 for Mg
2+ 

and Al
3+

, respectively.  The most active HT 

sample contained both 1 wt % Pt and 4% Cu.  At low temperatures, the Pt-Cu/HT samples 

outperformed Pt-Ba/Al2O3; however, at intermediate and high temperatures the Pt-Ba/Al2O3 

sample demonstrated higher NOX conversion.  When sulfur tolerance was studied, Pt-Cu/HT 

(B) 

(A) 
(C) 
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deactivated less than the Pt-Ba/Al2O3 sample, but deactivation was still observed.  Hydrothermal 

treatments were also less detrimental to the performance of Pt-Cu/HT samples in comparison to 

both Pt-Ba/Al2O3 and Pt/HT.  Formation of Pt-Cu alloys was suggested as one reason for higher 

thermal stability and sulfur resistance [246,247].  Fornasari et al. [247,248] demonstrated that the 

Mg/Al ratio in HT derived samples plays a crucial role in their performance.  Samples with 

lower Mg/Al ratios performed better at lower temperatures, but samples with higher Mg/Al ratios 

performed better at higher temperatures.  This was explained by different susceptibilities for the 

Mg(Al)O mixed oxide to form the more inactive spinel MgAl2O4 phase.  Later, Morandi et al. 

[249] proposed that storage on Pt-Mg(Al)O and Pt/Cu-Mg(Al)O occurred through two 

competing storage mechanisms.  NO2 proceeded through a “dismutation route”, while NO + O2 

proceeded through either the “dismutation route” or the “nitrite route”.  Storage of NO in the 

absence of O2 was not observed.  Equations 11 – 13 display the “dismutation route”, where 

Equation 13 is the net result of Equations 11 and 12.  Notice how similar these proposed storage 

mechanisms are to those presented for storage on BaO in Section 1.3.2.1. 

2��� + �(�)�� → ��(�)� + ���	(�)�  
11 

���	(�)� + ��� → ���	(�)� + �� 
12 

3��� + �(�)�� → 2���	(�)� +�� 
13 

 

 Yu et al. [250] and Li et al. [251] proposed slightly different storage mechanisms for 

hydrotalcite based NSR catalysts.  Li et al. [251] proposed that storage of NO2 occurred without 

evolution of gaseous NO.  Yu et al. [250] also mentioned Equation 13 listed above as a storage 

mechanism, but additionally mentioned storage through formation of adsorbed N2O4 and 

hyponitrites (N2O2)
2-

.  Generally, the use of hydrotalcite-like compounds in NSR catalysis can be 
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summarized by Fig. 17, where Pt-Mg(Al)O, Cu-Mg(Al)O, Pt/Cu-Mg(Al)O, CoMg/Al, Ca2CoAl-

oxide, Ca2CoLaAl-oxide, Co-Mg, Pt/Co/Mg/Al, Pd/Co/Mg/Al, Ru/Co/Mg/Al and V/Co/Mg/Al 

have all been considered [246–253]. 

 

 

Figure 17 . Preparation of hydrotalcite-like catalysts for NOX storage/reduction/decomposition 

applications, Yu et al. [252].  

  

Li et al. [254] studied Ba-Fe-O perovskite type NSR materials prepared by the sol-gel 

method.  After calcination at 750 °C, the main diffraction peaks detected by XRD were 

perovskite BaFeO3, defect perovskite BaFeO3-X, and BaCO3.  Calcination at 900 °C led to 

significant decreases in all three of these phases and an increase in spinel BaFe2O4, which 

translated into a NOX storage capacity (NSC) decrease from 114.7 µmol/g to 15.4 µmol/g.  

Interestingly, the BaFeO3 sample calcined at 750 °C retained 82% of its NSC during exposure to 

100 ppm SO2, while a reference Pt-Ba/Al2O3 samples only retained 15% of its storage capacity.  

So, perovskites may have lower NSC initially, but their long term sulfur durability may make 

them a viable alternative to conventional Pt-Ba/Al2O3 samples.  Zhu et al. [255] observed high 

activity for direct decomposition of NO even in the presence of O2 using La2-XBaXNiO4 (x ≤ 1.2) 

perovskite-type materials.  The authors suggested that doping Ba into La2NiO4 increased the 
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oxygen vacancy content, which increased the mobility of lattice oxygen in the perovskite and 

improved the redox capability of Ni.  Ba was used as a promoter because perovskite-type 

materials traditionally suffer from strongly adsorbed oxygen species on the active site that are 

hard to remove during regeneration, which subsequently leads to deactivation for these types of 

materials.  Ueda et al. [256] used a (La, Ba)(Fe, Nb, Pd)O3 perovskite catalyst and obtained 47% 

NOX conversion at 523 K, but only stored 3.1 – 11 µmol/g of NOX, which was substantially 

lower than storage capacities for Pt-Ba/Al2O3 systems.  In comparison, Xian et al. [257] 

measured NSC for a BaFeO3-X perovskite and found storage ranged from 578 – 222.9 µmol/g for 

samples calcined at 850 and 950 °C, respectively; whereas, a Pt/BaO/Al2O3 reference sample 

only stored 290 µmol/g.  Sulfur tolerance was also much greater for the perovskite materials. 

They retained 61% and 86% of their NSC after calcination at 850 and 950 °C, respectively.  The 

reference Pt/BaO/Al2O3 sample only retained 30 % of its initial NSC.  Unfortunately, the authors 

did not measure the cycle averaged conversion for these samples.  Recently, Kim et al. [172] 

demonstrated that a La0.9Sr0.1MnO3 perovskite based LNT catalysts with precious metal loadings 

of 1.8 Pd/0.2 Rh (g liter
-1

) outperformed a commercial Pt- based LNT with 1.6 Pt/0.3 Pd/ 0.2 Rh 

(g liter
-1

) at 350 °C.  Therefore, perovskite based samples could be viable alternative to Pt-

Ba/Al2O3 because they may be more sulfur resistant and could reduce costs by up to 70% 

(incurred from incorporation of precious metals) in comparison to Pt based samples.  

Additionally, K2Ti2O5 [130,131,223], Y2O3 doped MnOX metal oxides [258], MnOX-SnO2 [259], 

MgAl2O4 [217], NbMCM-41 [260], NaY + NbMCM-41[260], TiXZr1-XO4
 
[261], MnOX-CeO2 

[262], MnO2/NaY composites [263], La2-XSr1+XCu2O6-δ (0 < x < 2) [173], MnOy-ZrO2
 
[264] and 

NaY
 
[265]

 
have all been investigated as NSR support materials and show some promise for 

future study. 
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1.3.3.4 PROMOTERS 

The most common promoters for NSR systems are Rh, Ce, Fe and Co.  K, Ni, Cu, Mn, 

Nd, Si, Ca, Mg, Ti, La or La2O3, WO3, MoO3, V2O5, and Ga2O3 have also been investigated.  

Rabinowitz et al. [143] demonstrated that addition of ceria drastically improved NOX conversion 

on Pd/Rh TWCs, especially in combination with Rh, but could also increase the negative impact 

of sulfur due to its ability to store and release sulfur.  Lin et al. [266] studied NOX storage and 

reduction on CeO2 and La2O promoted Pt/BaO/Al2O3 and Pt/SrO/Al2O3 catalysts.  

Pt2.5Ce30.5Ba33.4Al100 and Pt2.5Ce22.5Ba41.7Al100 offered the highest storage capacity (1020 and 911 

µmol g
-1

, respectively) and conversion.  The Pt2.5Ce30.5Ba33.4Al100 sample achieved 100% NOX 

conversion at 400 °C.  The La2O promoted Pt/BaO/Al2O3 and La2O or CeO2 promoted 

Pt/SrO/Al2O3 exhibited much lower storage capacity and conversion.  Similarly, Ji et al. [267] 

found mixing Pt/BaO/Al2O3 with Pt/CeO2 in a 76:26 ratio improved NOX storage capacity in the 

range of 200 – 400 °C.  H2-TPR and CO-TPR experiments suggested decreased stability of 

stored nitrite/nitrate species.  Additionally, NOX conversion and N2 selectivity were higher for 

the mixed catalysts.  Schmeisser et al. [75] performed dynamic rich/lean reactor studies in the 

absence of sulfur on Pt, Rh, Ce, Ba and Al2O3 containing NOX storage and reduction materials 

and observed that ceria was a strong promoter for NO oxidation.  Unfortunately, addition of Rh 

to a Pt/Ba/Ce/Al catalyst completely negated the beneficial role of ceria, which is 

counterintuitive since synergy of Rh/Ce systems has been demonstrated in TWCs [143].  

However, the Pt-Rh/Ba/Ce/Al catalyst drastically outperformed Pt/Al, Pt/Ce/Al, Pt/Ba/Al, 

Pt/Ce/Ba/Al during steady-state reduction of NOX in rich environments.  This could be explained 

by high reduction activity of Rh.  Unfortunately the authors did not isolate the effect of Rh 

incorporation on reduction activity (e.g., through analysis of Rh/Al, Rh/Ce/Al and Rh/Ba/Ce/Al 
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catalysts).  Later, Ji et al. [151] studied the effect of adding physical mixtures of La2O3-stabilzed 

ceria to Pt-Rh/BaO/Al2O3 NSR catalysts.  The ceria mixtures exhibited increased storage 

efficiency, NOX conversion and decreased selectivity to NH3 with increasing ceria content.  

Increased selectivity to N2 was attributed to reaction of NH3 with downstream oxygen stored by 

ceria.  However, mixtures too high in ceria content caused decreased conversion of NOX.  Most 

likely because a significant portion of the reductant was consumed by oxygen stored in ceria, as 

evidenced by high reactor temperatures during reduction.  Alternatively, the high catalyst 

temperature could increase the rate of NOX release that slips from the catalyst before reduction 

can occur.  In later works, Ji et al. and Easterling et al. [139,267,268] studied the effects of sulfur 

and road aging on Pt/Ba/Al systems promoted by physical mixtures of Pt/CeO2.  In all cases, the 

addition of ceria or CeO2-ZrO2 positively influenced the NOX storage/reduction properties of the 

catalysts.  Briefly, ceria or CeO2-ZrO2 addition can be summarized as follows: 1.) as a 

supplement to the main storage component – where deactivation of the Ba phase could be 

compensated by ceria, which could still participate in storage, 2.) ceria has shown to resist phase 

segregation – when Pt/BaO/Al2O3 samples were aged at high temperatures, sintering of Pt led to 

lower interfacial contact between Pt and BaO, which decreased spillover mechanisms and 

therefore lowered catalytic activity.  Alternatively, sintering of Pt on CeO2 is hindered due to a 

strong metal-support interaction, 3.) ceria containing samples exhibited superior 

sulfation/desulfation characteristics – The ability of ceria to trap and release sulfur could help 

protect Ba from high levels of sulfur accumulation.  Similarly, Kaneeda et al. [174] found Mn 

and Ce played a beneficial role when incorporated into a RhPt–Naα/Al2O3 (α= Ti, Si, Mg, Ca, 

Mn, Co, Ni, La, and Nd) NSR catalyst.  The resulting RhPt–NaMn-Ce/Al2O3 sample was then 

tested in a lean-burn engine and achieved high NOX conversions even after being calcined at 700 
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°C, but higher calcination temperatures led to severe deactivation of the catalyst.  Conversely, 

Zou et al. [216] observed a negative influence for both Ce and Co addition on a Pt/K/TiO2-ZrO2 

catalyst.  Initially, addition of Co or Ce (as a physical mixture or impregnated on the support) 

seemed positive because NSC increased from 194 µmol g
-1 

to 280 and 380 µmol g
-1 

for Co and 

Ce addition, respectively.  However after sulfur exposure and subsequent regeneration, the 

promoted materials lost between 58% - 84% of the initial NSC; whereas the base Pt/K/TiO2-

ZrO2 only lost 4% of the initial NSC.  

Yamazaki et al. [269] studied transition metals as promoters for NSR catalysts.  

Pt/Ba/Fe/Al2O3, Pt/Ba/Co/Al2O3, Pt/Ba/Ni/Al2O3 and Pt/Ba/Cu/Al2O3 were compared with 

Pt/Ba/Al2O3, Pt/Fe/Al2O3, Pt/Co/Al2O3, Pt/Ni/Al2O3 and Pt/Cu/Al2O3.  Prior to aging in 0.08% 

SO2 for 5 hrs, addition of Fe, Co and Ni to Pt/Ba/Al2O3 or Pt/Al2O3 samples had no effect.  After 

aging in SO2, only addition of Fe had a positive effect on catalyst performance.  Therefore, the 

authors concluded that addition of Fe could be beneficial, but addition of Ni and Co had no effect 

on NSR properties.  Cu on the other hand, had a negative effect in all cases.  However, Arena et 

al. [270] reported that Cu could be a promising promoter for addition to NSR catalysts because it 

was observed to increase NOX reduction.  Hammache et al. [271] also reported that Cu addition 

increased sulfur tolerance, but diminished NSC in comparison to a reference Pt/Ba/Al2O3 

sample.   Formation of a Pt-Cu alloy was suggested to alter the SO2 oxidation activity of the 

catalysts, which led to lower deactivation due to sulfur poising.  However, SO2 exposure during 

reducing environments led to stable sulfur species that were not oxidized in subsequent lean 

phases.  Therefore, activity that was lost during rich sulfur exposures could not be recovered.   

Generally, the addition of Co and Fe seem to be more promising than addition of Ni or 

Cu.  However, promotion using Fe yielded contradictory results in the literature.  Fanson et al. 
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[43] studied Fe promoted Pt/BaO/Al2O3 samples and suggested that formation of a stable bulk-

like nitrate phase inhibited sulfur poisoning, where formation of a bulk-like nitrate phase was not 

observed in samples without Fe.  In a later study, Hendershot et al. [129] determined using high-

throughput experimentation, where Pt, Ba and Fe loading were all varied systematically, that the 

most important catalytic components were Pt and Ba and suggested an optimum wt. loading of 

1.25-1.5% Pt and 15-25% Ba.  However, earlier publications by Hendershot et al. indicated a 

positive influence when Fe was incorporated into Pt/Ba/Al2O3 NSR catalysts [128,272].  

Similarly, Le et al. [273] observed modest promotion of NSC by Fe and increased sulfur 

tolerance, but a decrease in NOX conversion.  Kayhan et al. [274] demonstrated that the 

morphology of the surface was dependent on the respective loading of Ba and Fe, which could 

help explain why contradictory results in the literature have been reported.  Luo et al. [275] 

demonstrate that Fe encapsulates Pt, which decreases the Pt-Ba interaction and leads to 

decreased NOX storage capacity.  Additionally, Fe selectively catalyzes the reduction of BaSO4 

to BaS, which makes sulfur removal more difficult.  Therefore, the addition of Co as a promoter 

may be more promising Fe.  For example, Vijay et al. [125] demonstrated that addition of Mn or 

Fe to a Pt/Ba/Al2O3 slightly improved NSC, but addition of Co nearly doubled the NSC.  

Additionally, a 5% Co/15% Ba/Al2O3 (w/w) sample stored equivalent amounts of NOX as the 

conventional 1% Pt/15% Ba/Al2O3 reference catalyst.  While Co was capable of promoting high 

NSC, Vijay et al. [125] mentioned that incorporation of noble metals would still be necessary to 

catalyze reduction of stored NOX since Co exhibited poor reduction activity.  Later, Vijay et al. 

[118] demonstrated that a 0.25% Pt/5% Co/15% Ba/Al2O3 catalyst showed superior performance 

over a 1% Pt/15% Ba/Al2O3 catalyst, with ¼ the Pt loading.  More recently, Vijay et al. [126] 

studied the NOX storage and reduction mechanism for Co containing NSR catalysts.  Co was 
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observed to exist in a highly oxidized state as Co3O4, but surface oxygen could be removed from 

the catalyst by 300 °C.  In summary, the promotional role of Co was attributed to increased NO 

to NO2 oxidation and increased interfacial contact between Co and Ba leading to increased NO2 

spillover onto Ba.  Lastly, Kim et al. [153]examined the effect of Co and Rh promoters.  Co was 

observed to catalyze NO oxidation; Rh catalyzed NOX reduction.  Conversely, Co inhibited NOX 

reduction and Rh inhibited NO oxidation.  Therefore, the loading of Co and Rh must be carefully 

balanced to negate the undesired properties of each promoter.   

Dawody et al. [276] investigated WO3, MoO3, V2O5 and Ga2O3 as promoters in NSR 

catalysts for both NO oxidation and sulfur tolerance.  In the absence of SO2, WO3 and MoO3 

exhibited the highest NO oxidation activity.  NO oxidation on Pt/MoO3/Al2O3 was least affected 

by SO2.  Therefore, the authors synthesized a Pt/MoO3-BaO/Al2O3 sample to test for sulfur 

durability and found it deactivated more quickly than then reference Pt/Ba/Al2O3 sample.  The 

deactivation method was not clear, but MoO3 clearly did not increase sulfur tolerance.  Lastly, 

physical mixtures of Mn/Ba/Al2O3 and Pt/Ba/Al2O3 have been reported to increase conversion of 

NOX and increase sulfur tolerance [277,278].  Ultimately, Ce, Co, Fe, Mn and Rh promoted 

systems, with particular emphasis on Mn, Ce, Co and Rh, may be interesting for further study 

because they could lower precious metal requirements and increase sulfur tolerance while 

maintaining the high activity of conventional Pt/Ba/Al2O3 systems. 

1.3.4 CONCLUSIONS 

Since their inception in the mid 1990s, many investigations have been performed and 

considerable progress has been made in understanding the NOX storage and reduction process.  

As evidence, the NOX storage mechanism has mostly been resolved.  However, many aspects of 

this system remain unsolved and elucidation of results from existing literature is difficult because 
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very few investigations employ the same conditions.  This is in part due to the large number of 

adjustable parameters including: choice of support, choice of the storage component, loading of 

the storage component, impregnation method of the storage component, choice of noble metal, 

loading of noble metal, impregnation method of the noble metal, impregnation order for the 

noble metal and storage component, precursors employed for impregnation, choice of promoters 

(Rh, CeO2 etc.), loading of promoters, lean gas environment (NO, NO+O2, NO2), rich gas 

environment (H2, CO, C3H6), inclusion of CO2, H2O or both, lean period duration, rich period 

duration, S.V. employed, pretreatment used, and lastly the inclusion of sulfur.  All of these 

aspects were covered is this review and it emerges that a fundamental understanding of how each 

parameter affects the observed operation is still lacking.  Furthermore, contradictory reports in 

the literature are really not too surprising given the large number of adjustable parameters, which 

ultimately leads to significantly different conditions and/or catalysts in many cases that are 

ultimately used during evaluation of NSR catalysts and comparison between one study to another 

can be difficult.  

In closing, determination of the reduction mechanism will define target parameters for 

future development of novel NOX storage and reduction catalysts, where synergy between the 

support, storage component, precious metals and promoters in combination with high thermal 

and hydrothermal stability and increased sulfur tolerance are desirable attributes for the next 

generation of NOX storage and reduction catalysts. 
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1.4 REAL SYSTEMS 

1.4.1  EARLY CATALYTIC CONVERTER SYSTEMS 

Fig. 18 shows three different simplified schematics of early catalytic converter systems 

[14].  In this case, the mixture-formation system is a black box description of the fuel-injection 

system and the downstream reciprocating piston arrangement represents a simplified example of 

a single cylinder in an internal combustion engine, where additional details related to fuel- 

injection, mixing and combustion strategies is out of the scope of this work.  Fig. 18A shows an 

engine exhaust system equipped with a two-way catalytic converter.  The catalytic converter in 

this case is referred to as a two-way catalyst because it only oxidizes CO and HCs.  The 

secondary oxygen added would result in a net lean environment, which favors oxidization of CO 

and HCs, but any NOX emitted from the engine would not be reduced under these conditions, as 

discussed at-length previously.  The schematic shown in Fig. 18B, is a two-catalyst system, but 

would still not be considered a three-way catalyst since the upstream catalyst is only responsible 

for the reduction of NOX and the downstream catalyst is only responsible for the oxidation of CO 

and HCs.  However, this system would be able to effectively remove all three pollutants 

simultaneously.  In this case, the engine would likely be tuned slightly rich to effect NOX 

reduction over the upstream catalyst, which explains why it is necessary to introduce secondary 

air over the downstream catalyst to oxidize CO and HCs.  The schematic shown in Fig. 18C 

represents a true three-way (TWC) system and has been the design of choice for automobiles 

from the late 70s to the present.  Notice that a lambda/O2 sensor has now been included and that 

it is connected to a feedback controller, which tunes the mixture-formation system to ensure that 

the exhaust gas is as close to the stoichiometric regime as possible.  Kaspar et al. [279] and 

Shelef and McCabe [280] previously discussed the advantages of both on-board diagnostics 
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(OBD) and oxygen storage capacity (OSC) on TWC systems, as summarized in Fig. 19.  Without 

OSC, the TWC spends a significant amount of time outside the optimum AFR, which results in 

lower conversion efficiencies for CO, HCs and NOX.  With OBD and OSC, the TWC spends the 

majority of the time very near the optimum AFR; as a result, conversion efficiencies higher than 

95% are achieved [279].  



www.manaraa.com

 

63 

 

 

 
 

 
 

 
Figure 18.  Schematics showing early catalytic converter systems, Faiz et al. [14]. 

A.) 

B.) 

C.) 
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Figure 19.  Effect of the AFR, advanced on-board diagnostics (OBD) and oxygen storage 

capacity (OSC) on the operation of TWC systems, Kaspar et al. [279]. 

 

1.4.2  MODERN CATALYTIC CONVERTER SYSTEMS 

In the 1990s, in California especially, a series of low-emission standards were 

implemented that started the progression towards a 10-fold reduction in HC emission and a 20-

fold reduction in NOX emissions [281].  In the case of HCs, 50-80% of the total HCs emissions 

are emitted during the cold-start period during FTP testing (i.e., the first 90-180 s of operation) 

before the TWC reaches the HC-light off temperature (≈300 °C) [15].  Practically, this means 

that a vehicle could fail an emissions test based on cold-start HCs alone after only 2 min. into a 
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23 min. test.  As a result, close-coupled TWCs were implemented.  These catalysts could achieve 

light-off within 10 s of operation and are composed of proprietary blends of metal oxides used to 

stabilize the Al2O3 and prevent Pd sintering [15].  Fig. 20 shows two possible examples of close-

coupled catalysts.  In one case, a small, close-coupled catalyst is used primarily to convert HCs, 

while the larger downstream, under-floor TWC is responsible for the majority of the CO 

oxidation and NOX reduction that takes place.  The latter example shows a much larger close-

coupled TWC that simultaneously converts all three pollutants, but at higher temperatures in 

comparison to the under-floor catalyst shown in the first example. 

 

Figure 20.  Two examples comparing the location and size of close-coupled TWCs [15]. 

 

The combination of TWCs and close-coupled TWCs has allowed auto manufactures to 

effectively meet emissions standards, but only for gasoline engines operating in the 

stoichiometric regime.  Table 4 shows typical exhaust compositions for a diesel engine, four-

stroke spark-ignited gasoline engine and a four-stroke spark-ignited lean burn gasoline engine 
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[279].  The conditions were included for the two-stroke engine for comparison, but will not be 

discussed.  Notice that in the case of diesel engines and lean-burn gasoline engines, the O2 

concentration is very high (e.g., 4-15%).  Comparison of these AFRs (26 and 17, respectively) 

with the results shown in Fig. 19 clearly demonstrates that poor performance in terms of NOX 

conversion is expected if a TWC-only system was used.  So for diesel engines or lean-burn 

gasoline engines, different/new catalytic technologies are required.  Figs. 21 - 25 summarize the 

most recent architectures suggested that are capable of removing lean-NOX, but still meeting the 

CO, HC and PM regulations. 

The following chapters focus on the systems shown in Figs. 21 and 22 (Chapters 2 and 3) 

and in Fig. 23 (Chapter 4).  Additional information regarding those systems is presented in the 

introductions of each corresponding chapter.  The systems shown in Figs. 24 and 25 were 

included for comparison, since they provide corollary examples, but are not the specific focus of 

this dissertation since they were designed for diesel engines. 
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 Table 4.  Typical Exhaust composition for several common commuter vehicles, Kaspar et al. [279]. 

Exhaust Components  

and conditions
a Diesel Engine 

Four-stroke spark-

ignited engine 

Four-stroke lean-burn 

spark-ignited engine 

Two-stroke spark-  

ignited engine 

NOX 350–1000 ppm 100–4000 ppm ≈1200 ppm 100–200 ppm 

HC 50–330 ppm C 500–5000 ppm C ≈1300 ppm C 20,000–30,000 ppm C 

CO 300–1200 ppm 0.1-6 % ≈1300 ppm 1-3 % 

O2 10–15 % 0.2-2 % 4-12 % 0.2-2 % 

H2O 1.4-7 % 10-12 % 12 % 10-12 % 

CO2 7 % 10-13.5 % 11 % 10-13 % 

SOX 10–100
b 

ppm 15–60 ppm 20 ppm ≈20 ppm 

PM 65 mg/m
3
 

Temperatures (test cycle) r.t. - 650 °C r.t. – 1100
c 

°C r.t. - 850 °C r.t. - 1000 °C 

GHSV (hr-1) 30,000-100,000 30,000-100,000 30,000-100,000 30,000-100,000 

λ (A/F)
d 

≈1.8 (26) ≈1 (14.7) ≈1.16 (17) ≈1 (14.7)
e 

a
N2 is remainder 

b
For comparison: diesel fuels with 500 ppm of sulfur produce of about 20 ppm of SO2 

c
Close-coupled TWC 

d
λ defined as ratio of actual A/F to stoichiometric A/F, λ=1 at stoichiometry (AFRSTOICH = 14.7) 

e
Part of the fuel is employed for scavenging of the exhaust, which does not allow for a precise definition of the A/F ratio. 
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Figure 21.  Close-coupled TWC, under-floor LNT configuration, as present on the BMW 120i 

(Model Year, 2009). 

 

 

 

 

Figure 22.  Close-coupled TWC, under-floor LNT + SCR configuration.  (Further discussed in 

Chapter 3.) 

Close-Coupled

TWCs

Under-floor

LNT

Close-Coupled

TWCs

Under-floor

LNT SCR
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Figure 23.  Layout of the passive-NH3, urea-less TWC + SCR approach, Li et al [282].  (Further 

discussed in Chapter 4.) 

 

 

 

 

 

 

Figure 24.  Layout of the emissions system for a light-duty diesel vehicle containing a diesel 

oxidation catalyst (DOC) and LNT + SCR configuration and a diesel particulate filter (DPF), 

McCabe et al. [283]. 

 . 
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Figure 25.  Layout of the modern medium- or heavy-duty DPF-SCR system (based on urea), 

Johnson et al. [284]. 

. 

 

 

  



www.manaraa.com

 

71 

 

CHAPTER 2.  IN SITU FTIR INVESTIGATION OF THE ROLE OF SURFACE 

ISOCYANATES IN THE REDUCTION OF NOX BY CO AND C3H6 OVER MODEL 

PT/BA/AL2O3 AND RH/BA/AL2O3 NOX STORAGE AND REDUCTION (NSR) 

CATALYSTS 

 

2.1  PREFACE 

Monometallic Pt- and Rh-containing model NOX storage and reduction (NSR) catalysts 

were investigated by in situ FTIR spectroscopy in order to determine the type of species present 

on the surface under simulated lean exhaust conditions and to identify potential reaction 

intermediates during reduction by CO and propylene.  The effect of precious metal selection, 

temperature, and water presence on NOX storage and reduction chemistry was considered.  The 

formation of surface isocyanate (NCO) species was observed during all cycling experiments, 

even in the presence of H2O, which prompted additional investigation on the role of these species 

in the NOX reduction mechanism.  Stability and reactivity experiments with Ba/Al2O3, 

Pt/Ba/Al2O3 and Rh/Ba/Al2O3 confirmed that the reactions of NCO with NO and O2 - producing 

N2 - are metal catalyzed pathways, while reaction of NCO with H2O - producing NH3 - is not.  

The contribution of NCO-related pathways to the overall N2 production mechanism could be 

significant, since quantification of the FTIR results suggests that up 30% of the total N2 produced 

could be directly related to the reaction of NCO with O2. 
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2.2  INTRODUCTION 

Lean-burn engines have attracted the attention of automobile manufactures due to the 

higher engine efficiencies achieved under these conditions, translating into better fuel economy 

and lower CO2 emissions.  For example, Heck and Farrauto [1] reported that lean-burn engines 

can achieve efficiencies 20 - 30% higher than conventional engines.  However, three-way 

catalysts (TWCs) employed for the oxidation of carbon monoxide (CO) and hydrocarbons (HCs) 

and the reduction of nitrogen oxides (NOX) in conventional engine exhausts are not effective in 

reducing NOX in the presence of excess O2.  Since their introduction in the mid 1990s [8,285], 

NOX storage and reduction (NSR) catalysts have been shown to represent a viable solution for 

the removal of NOX from lean exhausts.  To date, numerous investigations have been performed 

on NSR catalysts and the results are summarized in several recent reviews [3,4,6].  Briefly, 

common NSR formulations consist of noble metals (mainly Pt, Pd or Rh) and an 

alkaline/alkaline earth component (mainly Ba or K) supported on γ-Al2O3.  During the lean 

phase (60 - 120 s in length), NO is oxidized to NO2 on the precious metal, with the NO2 spilling 

over onto the storage component where it is initially stored in the form of a nitrite and can be 

further oxidized to a nitrate with increasing time [22,34,40,74,86,117].  During the rich phase (1 

- 2 s in length), the storage component is regenerated and the accumulated nitrites and/or nitrates 

are reduced to N2, NH3 or N2O, with N2 being the desirable product [16,62]. 

While the NOX storage mechanism is fairly well understood by now and widely accepted, 

the NOX reduction mechanism strongly depends on the reductant used with many critical details 

still to be resolved [42].  For example, Nova et al. [23,60,63,64] have proposed that the reduction 

of stored NOX by H2 is a Pt-catalyzed pathway that proceeds through an NH3 intermediate, where 

subsequent reaction of NH3 with adsorbed nitrates is responsible for the production of N2.  In fact 
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several groups agree that NH3 is a critical reaction intermediate when H2 is used as the reducing 

agent [66,67,286]. 

Similar agreement regarding the nature of the reaction intermediates has not been reached 

for the cases when CO and hydrocarbons (HC) are used as reductants, in part because 

significantly fewer investigations have been performed using such reductants [24–

28,43,59,107,287–290].  The mechanism of the reduction of NOX by CO is currently thought to 

proceed through an isocyanate (NCO) intermediate, which can react with NO, O2, stored 

nitrites/nitrates and H2O to form N2 or NH3 [24,27,43,287–290].   The NH3 formed by the 

hydrolysis of NCO can further react with stored NOX, thus contributing to overall N2 formation 

[64].  However, Lesage et al. suggested that formation of NCO species was undesirable and 

attempted to avoid it through rational catalyst design [145,146].  The presence of high 

concentrations of CO2 and H2O vapor in automotive exhausts, further affects the formation and 

reaction of surface NCO indirectly through the water gas shift (WGS) and steam reforming 

reactions.  These reactions competitively consume the CO and HCs needed for the formation of 

NCO species, while at the same time they generate H2 that can readily react with such species 

[20,64].  

Historically, the role of NCO species in other types of NOX reduction schemes has been 

examined and debated at length.  Lorimer and Bell [291] for example, reported that an NCO 

related NO reduction pathway on three way catalysts (TWCs) accounts for less than 5% of the 

total NO reduction and is therefore of limited significance.  Others also observed NCO formation 

under the stoichiometric TWC conditions, but similarly concluded that the NCO species were 

spectators in this environment [292–295].  Under lean exhaust conditions however, and over 

hydrocarbon-SCR type of catalysts many groups have postulated that NCO species contribute 
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significantly as intermediates to the overall reduction of NO [5,296–305].  However, as Burch et 

al. [5] have pointed out, the lack of kinetic data comparing the rate of removal of surface NCO 

species to the rate of formation of N2 still represents a major problem in validation of NCO-

related mechanisms.  

The goal of this work is to investigate the formation and reaction of surface NCO on 

model NSR catalysts under conditions approaching those of realistic exhausts.  In situ Fourier 

transform infrared (FTIR) spectroscopy was used in these efforts.  The effects of the type of 

precious metal used (i.e., Pt vs. Rh), the presence of water, the reductant selection (i.e., CO vs. 

C3H6) and the temperature (250 and 350 °C) were considered.  Since NCO formation was 

observed under all conditions studied, the stability and reactivity of these species in different gas 

environments was investigated in detail in an effort to determine the extent to which an NCO 

related reaction pathway contributes to the overall NOX reduction mechanism. 

2.3 EXPERIMENTAL 

2.3.1 CATALYST PREPARATION 

A set of 17 wt % Ba/Al2O3, 1 wt % Pt/17 wt % Ba/Al2O3 and 0.5 wt % Rh/17 wt % 

Ba/Al2O3 catalysts were prepared by a step-wise incipient wetness impregnation process.  For 

simplicity, the catalyst samples will subsequently be referred to as Ba/Al2O3, Pt/Ba/Al2O3 and 

Rh/Ba/Al2O3, respectively.  Prior to impregnation, the Catalox SBa-200 γ-Al2O3 (Sasol; 192 

m
2
/g) support was calcined in air for 24 h at 600 °C.  Ba was deposited first on the support by 

adding an aqueous solution of barium acetate (Alfa Aesar) to the calcined Al2O3.  Samples thus 

prepared were first dried, and then calcined in air for 12 h at 600 °C.  Aqueous solutions of 

rhodium (III) nitrate hydrate (Sigma-Aldrich) or tetraammineplatinum (II) nitrate (Sigma-
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Aldrich) were then impregnated onto the Ba/Al2O3 material to prepare the Pt/Ba/Al2O3 and 

Rh/Ba/Al2O3 catalysts, where the nominal weight loadings of the noble metals were chosen to 

yield equal molar loadings.  The catalysts were then dried and subsequently calcined in air for 5 

h at 500 °C.  The loadings of Pt and Rh were then verified by Atomic Absorption Spectroscopy 

(AAS) measurements performed using a Perkin Elmer AAnalyst 400 spectrometer.  The Ba 

loading was verified by further elemental analysis (Galbraith Laboratories).  Table 5 provides a 

list of the catalysts used in this investigation and includes some of basic characterization results 

for these materials. 

 

 

Table 5. Characterization of the catalysts used in this investigation. 

Catalyst Name 
Pt Loading Rh Loading Ba Loading Metal Dispersion SSA 

(wt %) (µmol g
-1

) (wt %) (µmol g
-1

) (wt %) (%) (m
2
 g

-1
) 

Ba/Al2O3 
- - - - 13.4 - 153 

Pt/Ba/Al2O3 1.01 52 - - 13.4 25 178 

Rh/Ba/Al2O3 - 
 

0.49
 

48 13.4 30 169 

 

 

2.3.2 BET SURFACE AREA AND H2-CHEMISORPTION 

BET surface area measurements and H2-chemisorption of O2-precovered metals was 

performed using a ChemBET-3000 analyzer (Quantachrome Instruments).  Prior to the BET 

measurements, the catalysts were outgassed in He for 12 h at 200 °C.  The surface area was then 
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determined using the multipoint BET method for adsorption of N2 at -196 °C.  The SSA values 

determined for the catalysts used in this investigation are shown in Table 5.   

Prior to chemisorption measurements, the catalysts were outgassed in He for 12 h at 200 

°C, heated in He to 300 °C, reduced in H2 for 2 h at 300 °C, flushed with He for 2 h at 300 °C to 

remove all H2 and finally, cooled back to room temperature in He.  Following this pretreatment, 

O2 titration of the exposed metal atoms was performed using 100 µL pulses of pure O2.  

Consecutive O2 pulses were introduced until no further uptake of O2 was observed.  Subsequent 

flushing with He for 15 min ensured removal of any excess oxygen before 100 µL pulses of pure 

H2 were introduced over the O2-precovered metals.  Similarly, H2 was pulsed until no further 

uptake of H2 was observed.  The stoichiometry for the adsorption of H2 on an O2-precovered 

metal was assumed to be 3:1 (i.e. 3[H] + O-M → H-M + H2O) [306,307].  Both O2- and H2-

chemisoroption measurements with the O2-pretreated Ba/Al2O3 catalyst indicated negligible 

uptake of O2 and H2, respectively, suggesting that the Ba phase is inert under these conditions.  

The % dispersions of the precious metals calculated from the chemisorption measurements are 

shown in Table 5. 

2.3.3 SCANNING TRANSMISSION ELECTRON MICROSCOPY 

Scanning transmission electron microscopy (STEM) images were collected using a JEOL 

2100F 200 kV FEG-STEM/TEM microscope equipped with a CEOS Cs corrector on the 

illumination system.  The geometrical aberrations were measured and controlled to provide less 

than a π/4 phase shift of the incoming electron wave over the probe-defining aperture of 15.5 

mrad.  High-angle annular darkfield (HAADF) STEM images were obtained with a Fischione 

Model 3000 HAADF detector with a camera length such that the inner cut-off angle of the 
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detector was 50 mrad.  The scanning acquisition was synchronized to the 60 Hz AC electrical 

power to minimize 60 Hz noise in the images and a pixel dwell time of 16µs was chosen. 

2.3.4 FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

FTIR spectra were collected with a Nexus 470 FTIR spectrometer (Thermo-Fischer 

Scientific) operated in transmission mode with a resolution of 2 cm
-1

.  Catalyst samples were 

used as self supported wafers (≈ 15-22 mg cm
-2

).  Immediately following analysis, the wafers 

were weighed and all spectral intensities were adjusted to an average sample size of 18.8 mg cm
-

2
.  A homemade cell was used for the in situ collection of spectra, consisting of a stainless steel 

tube (≈35mm x 12 cm) with cooling water flanges welded to each end.  The flanges were 

machined to accommodate polished NaCl windows (32mm x 3mm – Alfa Aesar) held in place 

by Viton O-rings.  Cooling water was passed through the flanges to keep the O-ring temperature 

below 100 °C.  The cell was wrapped in a 400 W, 4 ft heating cord (Glas-Col), which allowed 

heating up to 400 °C.  A thermocouple was placed in close proximity to the sample for 

temperature measurement.  A gas manifold with five mass flow controllers and two needle 

valves was used to prepare and deliver gas mixtures to the cell.  Certified gas mixtures (National 

Welders) of 1.00% NO/He, 1.00% H2/He, 0.965% NO2/He, 0.975% C3H6/He, 2.985% CO/He, 

9.990% O2/He, and UHP He were used as sources for the different gas components.  The total 

gas flow through the cell was maintained at 100 cm
3
 min

-1
 throughout all experiments.   

Background spectra were collected following treatment of the samples in a NO/O2 

environment for 10 h at 400 °C in order to exchange residual carbonates with nitrites/nitrates, 

followed by reduction in H2 for 1 h at 400 °C in order to completely remove any stored 

nitrites/nitrates.  The background spectra collected after such pretreatment did not exhibit any 

significant bands in the 1000 - 1650 cm
-1 

region, confirming the complete removal of any 
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residual carbonate and nitrate components on the surface.  Similar behavior has also been 

observed and reported in the literature by other groups [34,290].  Samples were then oxidized in 

10% O2/He for 5 h at 400 °C, flushed with He for 1 h at 400 °C and then cooled in He to either 

250 °C or 350 °C to initiate in situ spectra collection. 

 Storage experiments were conducted at 350 °C in either 1000 ppm NO/He, 1000 ppm 

NO/5% O2/He, 1000 ppm NO2/He or 1000 ppm CO/He.  Cycling experiments employed three 

discrete phases each lasting 2 min: a lean phase during which samples were exposed to a 1000 

ppm NO/5% O2/He mixture; a He flushing phase used to remove any residual NO and O2 and to 

minimize thermal effects due to the introduction of the reductant into an O2 rich environment 

[61]; and a rich phase during which samples were exposed to either 9000 ppm CO/He or 1000 

ppm C3H6/He mixture.  The effect of H2O during cycling was also investigated.  During these 

experiments water was introduced by bubbling an additional He stream through a VLE saturator 

held at 20.9 °C in order to achieve a 1% (mol.) H2O concentration in the final gas flow.   

 In a separate set of experiments, NCO species were formed on the catalyst surface at 350 

°C by first a 1000 ppm NO/5% O2/He mixture to the samples for 2 min in order to increase the 

concentration of nitrite and nitrate species on the surface.  Next, He was flowed over the samples 

for 2 min to flush all O2 from the cell, followed by 9000 ppm CO/He for 2 min to reduce the 

stored NOX species and generate surface NCO species.  Finally, He, 9000 ppm CO/He, 1000 

ppm NO/He, 1000 ppm O2/He or 1000 ppm H2O/He were used to investigate the stability and 

reactivity of the surface NCO species in these gas mixtures.   

2.3.5 PRODUCT ANALYSIS 

A flow reactor system equipped with a quadruple mass spectrometer (Leybold Inficon, 

Model type – TSPTT300) was employed for the analysis of the gaseous products formed during 
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the reaction of NCO and other surface species with He, 1000 ppm NO/He or 1000 ppm O2/He at 

the end of the rich phase.  These measurements were conducted in parallel and under the same 

conditions with the stability and reactivity measurements performed and monitored by in situ 

FTIR, as described in the previous section.  In order to differentiate between CO and N2 formed, 

isotopically labeled 
13

CO (Sigma Aldrich – 99 atom % 
13

C, <5 atom % 
18

O) was used as the 

reductant and the following m/z signals were followed for identification of the products: N2 (28), 

13
CO (29), NO (30), N2O (44), 

13
CO2 (45) and NO2 (46).  Prior to catalyst evaluation, cycling 

was performed in an empty quartz reactor and the resulting m/z signals were used as a baseline.  

Additionally, the m/z signals were normalized to a constant leak rate, which was necessary in 

order to correct for changes in the baseline caused by large differences in the average molecular 

weight of the gas mixtures (lean vs. rich) entering the mass spectrometer.   

2.4  RESULTS AND DISCUSSION 

2.4.1 CATALYST CHARACTERIZATION 

The results of Table 5 indicate that the Pt and Rh catalysts compared in this study are 

very similar in terms of their compositions and structural characteristics (i.e. molar metal 

loading, metal dispersion and surface area).  As a result, a direct comparison of the concentration 

of surface species formed – including NCO – and rates of consumption can directly demonstrate 

differences in the behavior of the two metals as compared to differences in surface area and/or 

particle size and dispersion. 

STEM images collected from different regions of the Pt/Ba/Al2O3 catalyst indicates that 

Ba was present both as an amorphously distributed phase and in large crystalline regions on the 

Al2O3 support.  Fig. 26A depicts one such Ba crystallite region, where corollary elemental 



www.manaraa.com

 

80 

 

analysis (Fig. 26C) confirmed only the presence of Ba.  Additional bright regions in Fig 26A 

lacking crystalline structure were assigned to amorphously distributed BaO and/or BaCO3.  The 

significant difference in the morphology of the two regions of the same material shown in Figs. 

26A and 26B demonstrates the heterogeneous nature of the Pt/Ba/Al2O3 material.  Interestingly, 

the formation of large, crystalline Ba regions was suppressed for the Ba/Al2O3 catalyst.  While 

crystalline regions were also observed, in that case, they were generally much smaller, less 

frequent and exhibited duller edges than those observed for the noble metal containing catalysts, 

where Pt and Rh may be assisting in the formation of these large, crystalline Ba phases during 

calcination.  Similar SEM results for a Pt/Ba/Al2O3 sample were previously reported by Vijay et 

al. [126].   

The small (≈2-3 nm) bright spots observed in Fig. 26B most likely represent Pt particles.  

EDX measurements (Fig. 26D) confirmed the presence of both Pt and Ba in the region of Fig. 

26B, although definitive assignment of individual particles is difficult because the molecular 

weights of Pt and Ba are similar and the loading of Ba is high.  It should be pointed out that no 2-

3 nm particles were observed in the STEM images of the non-metal containing Ba/Al2O3 sample, 

further supporting assignment of such particles to the noble metal component.  Confirmation of 

the Pt particles located on top or immediately next to a Ba phase, as commonly portrayed in the 

literature [3,6,66,308] is exceedingly difficult.  However, our STEM images suggest that Pt and 

Ba appear to be in close contact.  HRTEM micrographs collected by Frola et al. [179] exhibited 

similar findings, where crystalline BaCO3 regions observed on “as prepared” catalysts partially 

masked the presence of Pt.  Subsequent conditioning resulted in clear identification of Pt 

particles on the support, but the location of the Ba containing phase became less clear.  
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Interestingly, Ji et al. [139] did not observe any large, BaCO

clearly visible in their STEM images of an “as prepared” Pt

 

Figure 26.  STEM images and corresponding EDX analyses of two different regions of the 

Pt/Ba/Al2O3 catalyst used in this investigation.

   

2.4.2 STORAGE OF NOX AND CO AT 

In order to identify and assign the different 

nitrate and carbonate storage experiments were performed

81 

did not observe any large, BaCO3 crystallite regions and Pt was 

images of an “as prepared” Pt-Rh/Ba/La-Al2O3 washcoat catalyst.

 

 
STEM images and corresponding EDX analyses of two different regions of the 

catalyst used in this investigation. 

AT 350 °C 

identify and assign the different FTIR bands observed during cycling, separate 

experiments were performed with the Pt- and Rh

crystallite regions and Pt was 

washcoat catalyst. 

 

 
STEM images and corresponding EDX analyses of two different regions of the 

bserved during cycling, separate 

and Rh-containing 
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samples.  Band assignments were made according to previously published results, as summarized 

in Table 6. 

 

Table 6.  FTIR band assignments. 

Species Wavenumbers (cm
-1

) Reference 

NOX Species on Ba   

Bidentate nitrate 970-1050, 1200-1320, 1540-1650 [34,40] 

Monodentate nitrate 1290-1330, 1425-1540 [31,33] 

Ionic nitrate 1038, 1300-1360, 1400-1460 [34,37,40,188] 

Monodentate nitrite 970-1340, 1410-1500 [31,33,34] 

Bidentate nitrite 1230, 1300 [31,34] 

COX Species on Ba   

Bridged bidentate carbonate 1020-1060, 1320-1340, 1610-1650 [37,179] 

Chelating bidentate carbonate 1060, 1350-1380, 1550-1600 [37,179] 

Monodentate carbonate 1440, 1740 [37,179] 

Ionic carbonate 1430-1450 [37,179] 

NCO Species on Al2O3 and Ba   

Octahedral  Al
3+

 isocyanate 2260 [24,27,145] 

Tetrahedral  Al
3+

 isocyanate 2222 [24,27,145] 

Ba
2+

 isocyanate 2162 

 

[24,27,145] 

 

 

Introduction of a NO/O2 mixture to Pt/Ba/Al2O3 at 350 °C initially resulted in the 

appearance of three bands centered at 1467, 1300 and 1210 cm
-1

 in the corresponding spectrum 

(Fig. 27A).  These bands were rapidly converted (<1 min) to bands centered at 1547, 1465, 1418, 

1306 and 1024 cm
-1

.  Since many of the vibrations of nitrate species overlap (see Table 6), it is 

difficult, if not impossible, to definitively differentiate between these species on the surface 

[287].  However, nitrites can be distinguished from nitrates and the bands at 1300 and 1210 cm
-1

 

have been previously assigned to bidentate nitrite species on Ba [40].  Bands at 1547, 1465, 

1418, 1306 and 1024
-1

 are most likely associated with monodentate, bidentate or ionic nitrates on 
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Ba, where the bands at 1418, 1306 and 1024 cm
-1

 have been widely assigned in the literature to 

ionic (“bulk-like”) nitrates [74,179,188].  The results shown in Fig. 27A indicate that the storage 

of NOX in the presence of O2 on Pt/Ba/Al2O3 proceeds via a nitrite to nitrate route, where this 

mechanistic pathway has already been established by our group and others in the literature 

[22,34,40,117].  Finally, in agreement with previous literature reports, our results show that at 

350 °C surface nitrates are the dominant storage species at times relevant to NOX storage (60 - 

120 s).  Identical results were also obtained with the Rh/Ba/Al2O3 sample (not shown for 

brevity). 

The NOX storage capacity of the Pt/Ba/Al2O3 and Rh/Ba/Al2O3 samples was estimated by 

integration of the bands in the 1050 -1650 cm
-1 

region.  A similar approach has been also 

followed by Saito et al. [309].  The resulting area can then be plotted as a function of storage 

time.  The Pt/Ba/Al2O3 and Rh/Ba/Al2O3 samples exhibited similar storage capacity, as shown in 

Fig. 28.  Corollary experiments performed in a fixed bed reactor yielded similar results.  These 

results may at first appear surprising since Rh is, in general, assumed to be less active than Pt in 

NO oxidation [16] and Abdulhamid et al. [25] previously reported a lower NOX storage capacity 

for Rh/Ba/Al2O3 than Pt/Ba/Al2O3.  In another publication however, Abdulhamid et al. [27] 

reported that Rh/Ba/Al2O3 outperformed Pt/Ba/Al2O3 in NOX storage.  Large differences in 

precious metal dispersion were listed as the most likely reason for this behavior, since Pt and Rh 

dispersions were 5% and 31%, respectively.  In contrast, Vijay et al. [118] observed similar 

storage capacities for Pt/Ba/Al2O3 and Rh/Ba/Al2O3 if long cycle times were used, which is 

similar to our experimental protocol.  Overall it appears in our case that with the same metal 

loading and particle size (i.e., dispersion) both metals exhibit similar behavior. 
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Introduction of CO to Pt/

growth of bands centered at 1569, 1336 and 1057 cm

27B).  These bands can be assigned to carbonate species on Ba 

band was observed at 2020 cm
-1 

results were also obtained with the Rh

appearing at 2006 cm
-1

. 

 

Figure 27.  In situ FTIR spectra of a Pt/Ba/Al

NO/5% O2 in He and (B) 1000 ppm

3, 5, 10 and 20 min of exposure).

84 

Pt/Ba/Al2O3 at 350 °C resulted in the appearance and subsequent 

growth of bands centered at 1569, 1336 and 1057 cm
-1

 in the spectrum of this material (Fig. 

se bands can be assigned to carbonate species on Ba [37,179].  An additional weak 

1 
and can be assigned to a Pt carbonyl species

also obtained with the Rh/Ba/Al2O3 sample with the carbonyl band in this case 

FTIR spectra of a Pt/Ba/Al2O3 catalyst during exposure to (A) 1000 ppm 

in He and (B) 1000 ppm CO in He mixtures at 350 °C (Spectra shown at 0, 0.5, 1, 2, 

3, 5, 10 and 20 min of exposure). 

at 350 °C resulted in the appearance and subsequent 

pectrum of this material (Fig. 

An additional weak 

es [24].   Identical 

sample with the carbonyl band in this case 

 

 

catalyst during exposure to (A) 1000 ppm 

C (Spectra shown at 0, 0.5, 1, 2, 
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Figure 28.  NOX storage capacity of (

NO/5% O2 in He mixture at 350 °C (obtained by integration of FTIR bands in the 1050 

cm
-1

 region). 

 

2.4.3 NOX STORAGE-REDUCTION 

In situ cycling studies between NO

two different temperatures in order to investigate potential differences in the NO

reduction mechanisms.  Fig. 29 

spectroscopy using CO as the reducing agent at 350 

spectra collected were plotted in a 3D representation in order to more clearly show the NSR 

cycling behavior.  The bands in the 1200 

nitrite/nitrate and carbonate species adsorbed on the su

2221 cm
-1

 appear when CO is introduced as the reductant molecule.  The first several lean and 

rich phases are denoted in Fig. 

85 

storage capacity of ( ) Pt/Ba/Al2O3 and ( ) Rh/Ba/Al2O3

in He mixture at 350 °C (obtained by integration of FTIR bands in the 1050 

EDUCTION CYCLING STUDIES 

cycling studies between NOX storage and reduction conditions were conducted at 

ent temperatures in order to investigate potential differences in the NO

 shows one such example of NSR cycling monitored with FTIR 

spectroscopy using CO as the reducing agent at 350 °C over Pt/Ba/Al2O3.  In this 

spectra collected were plotted in a 3D representation in order to more clearly show the NSR 

cycling behavior.  The bands in the 1200 - 1650 cm
-1

 region of the spectrum are characteristic of 

nitrite/nitrate and carbonate species adsorbed on the surface and the bands at 2030, 2162 and 

appear when CO is introduced as the reductant molecule.  The first several lean and 

rich phases are denoted in Fig. 29 and help show the distinct changes observed in the spectra 

 

3 in a 1000 ppm 

in He mixture at 350 °C (obtained by integration of FTIR bands in the 1050 - 1650 

storage and reduction conditions were conducted at 

ent temperatures in order to investigate potential differences in the NOX storage and 

shows one such example of NSR cycling monitored with FTIR 

.  In this case, the 

spectra collected were plotted in a 3D representation in order to more clearly show the NSR 

region of the spectrum are characteristic of 

rface and the bands at 2030, 2162 and 

appear when CO is introduced as the reductant molecule.  The first several lean and 

and help show the distinct changes observed in the spectra 
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under different NSR cycling conditions.  Fig. 2

the cycling protocol used in our experiments and the behavior observed on the surface from 

cycle to cycle.  In the following sections, closer examination of the lean and rich phases will be 

conducted using 2D figures because the band assignments are more clearly resolved in this 

representation of the data. 

 

 

Figure 29.  A 3D plot showing the 

storage-reduction cycling on Pt/Ba/Al

86 

nditions.  Fig. 29 also clearly shows the reproducibility of both 

the cycling protocol used in our experiments and the behavior observed on the surface from 

cycle to cycle.  In the following sections, closer examination of the lean and rich phases will be 

conducted using 2D figures because the band assignments are more clearly resolved in this 

A 3D plot showing the in situ spectra collected during three lean-rich phases of NO

ction cycling on Pt/Ba/Al2O3 using CO as the reducing agent at 350 

also clearly shows the reproducibility of both 

the cycling protocol used in our experiments and the behavior observed on the surface from 

cycle to cycle.  In the following sections, closer examination of the lean and rich phases will be 

conducted using 2D figures because the band assignments are more clearly resolved in this 

 

rich phases of NOX 

using CO as the reducing agent at 350 °C. 



www.manaraa.com

 

87 

 

CO CYCLING AT 250 °C 

In situ FTIR spectra collected during such cycling over Pt/Ba/Al2O3 at 250 °C are shown 

in Fig. 30.  CO was used as the reducing agent in this case.  For clarity, the first lean cycle is 

shown in this figure because spectra collected during subsequent lean cycles contain both 

carbonate and nitrite/nitrate features, which makes elucidation of the different bands more 

complex.  The spectra of Fig. 30 indicate that during NOX storage at 250 °C, both in the absence 

(Fig. 30A) and presence (Fig. 30C) of 1% H2O, bands centered at approximately 1360 and 1200 

cm
-1

 are formed in the corresponding spectra.  The band at 1200 cm
-1

 was previously assigned to 

bidentate nitrite species on Ba [40].  Assignment of the band at 1360 cm
-1

 is more ambiguous 

since monodentate nitrite, monodentate nitrate and ionic nitrate species on Ba have features in 

this area [31,33,34,40,179,188].  It has been reported that Al2O3 could also contribute to NOX 

storage at this temperature [33], although in our case such a contribution in unlikely because no 

bands attributed to nitrates on Al2O3 were observed in the vicinity of 1600 cm
-1

.  Overall, it is 

apparent from Figs. 30A and 30C that the Ba nitrite species represents the dominant NOX storage 

form at 250 °C, for storage times corresponding to realistic NSR operations (i.e., 60-120 s).  The 

presence of water does not have a significant effect during storage, since Figs. 30A and 30C are 

qualitatively very similar.  Epling et al. [29] previously reported that the presence of water was 

detrimental to NOX storage, especially at lower temperatures.  This effect may not have been 

observed in our case due the lower concentration of H2O used (1% vs. 8%).   
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Figure 30.  In situ spectra collected during NO

°C.  Panes (A) and (C) display spectra collected during the first lean periods (conditions: 1000 

ppm NO/5%O2/He); panes (B) and (D) display spectra 

(conditions: 9000 ppm CO/He).  Spectra in panes (A) and (B) were collected during dry cycling; 

spectra in panes (C) and (D) were collected in the presence of 1% H

 

Figs.30B and 30D show spectra collected during the rich

and presence of 1% H2O, respectively.  In the absence of H

1950, 1557, 1356 and 1062 cm

30B).  The bands at 1557, 1356 and 

agreement with the results of the storage measurements described 

noting that significant contributions from carbonate features carry over from cycle to cycle since 

these species are stable under both lean and rich conditions at this temperature.  Furthermore, 

spectra collected during the subsequent lean phase indicated slow growth of the band centered at 

approximately 1200 cm
-1

, characteristic of stored nitrites on BaO, wh
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spectra collected during NOX storage-reduction cycling on Pt/Ba/Al

C.  Panes (A) and (C) display spectra collected during the first lean periods (conditions: 1000 

/He); panes (B) and (D) display spectra collected during the rich periods 

(conditions: 9000 ppm CO/He).  Spectra in panes (A) and (B) were collected during dry cycling; 

spectra in panes (C) and (D) were collected in the presence of 1% H2O. 

D show spectra collected during the rich phase of cycling in the absence 

O, respectively.  In the absence of H2O, bands at 2228, 2166, 2061, 2043, 

1950, 1557, 1356 and 1062 cm
-1

 are present in the spectra collected during rich phases (Fig. 

B).  The bands at 1557, 1356 and 1062 cm
-1

 can be assigned to Ba carbonate features, in 

agreement with the results of the storage measurements described in Section 2

noting that significant contributions from carbonate features carry over from cycle to cycle since 

species are stable under both lean and rich conditions at this temperature.  Furthermore, 

spectra collected during the subsequent lean phase indicated slow growth of the band centered at 

characteristic of stored nitrites on BaO, which indicates that a 

 

 
reduction cycling on Pt/Ba/Al2O3 at 250 

C.  Panes (A) and (C) display spectra collected during the first lean periods (conditions: 1000 

collected during the rich periods 

(conditions: 9000 ppm CO/He).  Spectra in panes (A) and (B) were collected during dry cycling; 

phase of cycling in the absence 

O, bands at 2228, 2166, 2061, 2043, 

are present in the spectra collected during rich phases (Fig. 

can be assigned to Ba carbonate features, in 

2.4.2.  It is worth 

noting that significant contributions from carbonate features carry over from cycle to cycle since 

species are stable under both lean and rich conditions at this temperature.  Furthermore, 

spectra collected during the subsequent lean phase indicated slow growth of the band centered at 

ich indicates that a 
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significant portion of the Ba storage sites are saturated with relatively stable carbonate species 

that are not removed during lean phases at 250 °C. 

The bands at 2061 and 2043 cm
-1

, as well as the broad band centered at approximately 

1950 cm
-1

, can be assigned to linear and bridged CO carbonyls on Pt sites [27,310,311].  Finally, 

the bands at 2228 and 2166 can be assigned to NCO species adsorbed on Al
3+

 and Ba
2+

 sites, 

respectively [24].  The NCO bands are fairly intense in comparison to the other surface species 

observed, leading some groups to postulate that these species may be intermediates in the 

reduction process [24,27,43].   

Spectra collected at 250 °C during the rich phase in the presence of 1% H2O (Fig. 30D) 

showed significant differences in the NCO region when compared to the corresponding spectra 

collected under dry conditions.  More specifically no Al NCO band (2228 cm
-1

) was observed in 

this case, while the band associated with the Ba NCO species (2166 cm
-1

) had significantly lower 

intensity.  Additionally, the Ba NCO band also increases, reaches a maximum and then decreases 

as the rich phase progresses.  Similar behavior has previously been reported by Lesage et al. 

[145].  Several factors may be contributing to this effect.  First, it is possible that H2O could 

inhibit the formation of NCO species through the formation of hydroxyl groups that block active 

Pt sites and thus decrease the surface concentration of the NCO precursors [312,313].  However 

in this case, one would expect the surface concentration of Pt carbonyls to decrease as well.  

Given that the intensities of the carbonyl peaks in the 1900- 2100 cm
-1 

region are essentially the 

same in the spectra of Figs. 30B and 30D, this explanation appears to be less plausible.   

Alternatively, it is also possible that the presence of H2O initiates the WGS reaction, 

which in turn decreases the concentration of CO available for adsorption and reaction with N 

adatoms on the surface [64].  Once again however, a decreased CO concentration should have 
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resulted in a decrease in the intensity of the carbonyl bands that was not observed.  Thus, the 

most likely explanation is that the surface NCO species are formed at the same rate and to the 

same extent as under dry case, but weaker band intensities are observed because in the presence 

of H2O, they are rapidly hydrolyzed to NH3 [24,64].   

Cycling in the presence of H2O also affects, to a lesser extent, the carbonate and 

nitrite/nitrate bands.  For example, the carbonate band at 1356 cm
-1

 appears to shift to 1366 cm
-1

, 

while a shoulder at 1440 cm
-1

 is also formed, along with a new band at 1577 cm
-1

, which 

overlaps with the band at 1557 cm 
-1 

and significantly contributes to the overall spectral intensity 

in that region of the spectrum.  
 
The appearance of the new bands at 1577 and 1366 cm

-1
 can 

attributed to the formation of surface formate species in addition to the surface carbonates [298].  

Furthermore, the presence of the band at 1440 cm
-1

, which was previously assigned to bulk Ba 

carbonate [34,179], indicates that bulk-type carbonates are formed in the presence of water .  

This result is not surprising since Szanyi et al. [187,191] noticed similar behavior for transition 

of surface Ba nitrates to bulk Ba nitrates in the presence of water.  Further comparison between 

Figs. 30B and 30D indicates that lower concentrations of carbonates and higher concentrations of 

nitrites are present on the surface during cycling in the presence of H2O.  This in turn, may 

suggest that water facilitates storage and release of NOX at 250 °C.  These results are in 

agreement with the results of a recent study on the effect of H2O conducted by Nova et al. [64].  

CO AND C3H6 CYCLING AT 350 °C 

In situ cycling experiments were also performed at 350 °C, where the effects of precious 

metals and reductant selection were also considered.  Fig. 31 shows spectra collected during 

cycling at 350 °C over the Pt/Ba/Al2O3 catalyst, in the presence and absence of H2O and with 

9000 ppm CO used for the reduction phase.   
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Figure 31.  In situ spectra collected during NO

°C.  Panes (A) and (C) display spectra collected during the first lean periods (conditions: 1000 

ppm NO/5%O2/He); panes (B) and (D) display spectra collected during th

(conditions: 9000 ppm CO/He).  Spectra in panes (A) and (B) were collected during dry cycling; 

the spectra in panes (C) and (D) were collected in the presence of 1% H

 

During the 1
st
 lean phase

cm
-1

, while additional bands also appeared at 1541, 1465, 1410 and 1315 cm

exposure time (Figs. 31A and 31

Table 6, the initial bands at 1300 and 1210 cm

1541, 1465, 1410 and 1315 cm
-1

observed between the cycling experiments at 250 and 350 

occurred mainly in the form of surface nitrites, where as storage at 350 

form of surface nitrates.  It is also clear that the dominant NO

function of storage temperature and contact time, in agreement with previous li
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spectra collected during NOX storage-reduction cycling on Pt/Ba/Al

C.  Panes (A) and (C) display spectra collected during the first lean periods (conditions: 1000 

/He); panes (B) and (D) display spectra collected during th

(conditions: 9000 ppm CO/He).  Spectra in panes (A) and (B) were collected during dry cycling; 

the spectra in panes (C) and (D) were collected in the presence of 1% H2O. 

hase, bands appeared immediately in the spectra a

, while additional bands also appeared at 1541, 1465, 1410 and 1315 cm

31C).  As discussed in the previous sections and with the aid of 

, the initial bands at 1300 and 1210 cm
-1

 can be assigned to Ba nitrites, while the bands 

1
 can be assigned to Ba nitrates.  The most significant difference 

observed between the cycling experiments at 250 and 350 °C was that storage of NO

e form of surface nitrites, where as storage at 350 °C occurred mainly in the 

form of surface nitrates.  It is also clear that the dominant NOX storage form on the surface is a 

storage temperature and contact time, in agreement with previous li

 

 
reduction cycling on Pt/Ba/Al2O3 at 350 

C.  Panes (A) and (C) display spectra collected during the first lean periods (conditions: 1000 

/He); panes (B) and (D) display spectra collected during the rich periods 

(conditions: 9000 ppm CO/He).  Spectra in panes (A) and (B) were collected during dry cycling; 

appeared immediately in the spectra at 1300 and 1210 

, while additional bands also appeared at 1541, 1465, 1410 and 1315 cm
-1

 with increased 

ions and with the aid of 

e assigned to Ba nitrites, while the bands at 

can be assigned to Ba nitrates.  The most significant difference 

C was that storage of NOX at 250 °C 

C occurred mainly in the 

storage form on the surface is a 

storage temperature and contact time, in agreement with previous literature reports 
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[40,112].  Differentiation between the types of NOX species stored on the surface is important 

because nitrites have lower thermal stability and are therefore expected to be more reactive than 

nitrates [31,112].  Therefore, storage of NOX as Ba nitrites instead of nitrates may be favorable 

for NSR cycling, but NOX slip due to thermal release of nitrites during exotherms created by 

introduction of reductants to lean environments also represents a problem [61].  The presence of 

H2O does not appear to affect storage significantly, consistent with the storage results obtained at 

250 °C. 

Spectra collected under dry conditions during the rich phase of cycling over the same 

Pt/Ba/Al2O3 catalyst are shown in Fig. 31B.  In contrast to the results obtained at 250 °C, prior to 

the introduction of CO (Fig. 31B, 0 s), the surface is mostly free of carbonate species and the 

nitrate bands at 1541, 1410 and 1315 cm
-1

 are the dominant features in the spectrum.  Hence, it 

appears   that most of the carbonate species formed during the previous rich phase were removed 

during the subsequent lean phase, indicating a faster exchange between barium carbonates and 

nitrates at 350 °C.  Following the introduction of CO, the intensity of the nitrate bands decreases, 

while new carbonate bands appear at 1567 and 1344 cm
-1

.  Furthermore, significant amounts of 

NCO species are formed both on Al and Ba as indicated by the appearance of strong 

corresponding bands at 2221 and 2162 cm
-1

, respectively.   

The presence of H2O significantly affects the concentration of surface NCO at 350 °C.  

Spectra collected under these conditions (Fig. 31D) indicate that the Al NCO species are no 

longer present, while the intensity of the band at 2162 cm
-1

 corresponding to the Ba NCO species 

is dramatically reduced in intensity.  In agreement with the results from 250 °C, the Ba NCO 

band also grows intensity, reaches a maximum and then decreases as the rich phase progresses, 

where the dramatic decrease in intensity due to the presence of water makes this behavior much 
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harder to distinguish in Fig. 31D.  The effect of temperature and the presence of H2O on the 

concentration of NCO species formed during cycling using CO as the reducing agent is more 

clearly demonstrated in Fig. 31, where the integrated intensities of the bands in the NCO region 

(i.e. 2100-2350 cm
-1

) is plotted as a function of time.  The results of Fig. 31 clearly show that 

higher concentrations of surface NCO species were formed under dry conditions at 350 °C than 

at 250 °C.  Szailer et al. [24] previously reported that the highest concentrations of NCO were 

formed at 250 °C, but in their experimental protocol, NO2 was first adsorbed on BaO at room 

temperature and the temperature was then ramped in the presence of CO up to 300 °C.  The 

thermal stability of NCO was also investigated in the same study and it was concluded that their 

decomposition does not start until approximately 350 °C.  In contrast, Abdulhamid et al. [27] 

have also reported that higher concentrations of surface NCO are formed during in situ DRIFTS 

measurements at 350 °C rather than at 250 °C, in agreement with our observations.  

Additionally, Fanson et al. [43] concluded that the concentration of surface NCO species formed 

is strongly related to the amount of NOX stored on Ba. Therefore, the higher concentration of 

NCO species observed at 350 °C can be attributed to the increased NOX storage at this 

temperature.  Furthermore, the subtlety between amount of NOX stored at different temperatures 

and the reaction leading to the formation of surface NCO species demonstrates that attempts to 

decouple the reduction process from the NOX storage process may result in misleading 

conclusions, since storage under different conditions most likely results in differences in both the 

amounts and type of NOX species stored on Ba.  
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Figure 32.  Concentrations of surface NCO

conditions: ( ) 350 °C in the absence of H

of H2O and ( )250 °C in 1% H2O (Lean: mixture of 1000 ppm NO/5% O

9000 ppm CO/He). 

 

The results of Fig. 32 also demonstrate the effect of water on the concentrations of 

surface NCO at 250 and 350 °C.  While the effect is strong at both temperatures, the observed 

decrease is less at 250 °C presumably because of a lower

°C changes were also observed in the carbonate and nitrate bands (Fig. 

new bands appear to form at 1365 and 1557 cm

Again, the formation of bands at 1365 and 1557 cm

in addition to surface carbonates 

BaCO3 species [34,179].  The formation of this band in the presence of water was in agreement 

with our results from 250 °C.  A promotional effect of the presence of H

cycling at 350 °C has been described by other groups 

be discerned through examination of the FTIR spectra alone since the rate and extent of 

94 

Concentrations of surface NCO species formed on Pt/Ba/Al2O3 under different 

C in the absence of H2O, ( ) 350 °C in 1% H2O ( ) 250 °C in the absence 

O (Lean: mixture of 1000 ppm NO/5% O2/He; Rich: mixture 

also demonstrate the effect of water on the concentrations of 

surface NCO at 250 and 350 °C.  While the effect is strong at both temperatures, the observed 

decrease is less at 250 °C presumably because of a lower rate of hydrolysis in this case.  At 350 

°C changes were also observed in the carbonate and nitrate bands (Fig. 32D).  More specifically, 

new bands appear to form at 1365 and 1557 cm
-1 

and a shoulder at 1440 cm
-1

 was also observed.  

f bands at 1365 and 1557 cm
-1

 can be assigned to surface formate species 

in addition to surface carbonates [298].  The shoulder at 1440 cm
-1

 can be assigned to a bulk 

.  The formation of this band in the presence of water was in agreement 

with our results from 250 °C.  A promotional effect of the presence of H2O addition during CO 

cribed by other groups [28,64], however such an effect could not 

be discerned through examination of the FTIR spectra alone since the rate and extent of 

under different 

C in the absence 

/He; Rich: mixture of 

also demonstrate the effect of water on the concentrations of 

surface NCO at 250 and 350 °C.  While the effect is strong at both temperatures, the observed 

rate of hydrolysis in this case.  At 350 

D).  More specifically, 

was also observed.  

can be assigned to surface formate species 

can be assigned to a bulk 

.  The formation of this band in the presence of water was in agreement 

O addition during CO 

an effect could not 

be discerned through examination of the FTIR spectra alone since the rate and extent of 
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reduction of stored NOX species cannot be determined due to the overlapping of carbonate and 

nitrate bands.    

Similar experiments were also performed using C3H6 as the reducing agent and the 

spectra collected are shown in Fig. 33.  For brevity, only spectra collected during the rich phase 

are shown since the storage phase is unaffected by the choice of reducing agent.  The 

concentration of C3H6 (i.e., 1000 ppm) was selected in order to keep the reductant potential of 

CO and C3H6 the same and therefore obtain results that are directly comparable.  Spectra 

collected under rich conditions indicate the presence of several types of carbon-containing 

surface species, with characteristic bands in the 1250-1600 cm
-1

 region.  In addition to 

carbonates, the formation of formates and carboxylates is also expected when a hydrocarbon 

reductant is used [298].  Due to the overlapping of the respective bands, band assignments in this 

region should be regarded as tentative.  Nevertheless, comparison of the spectra collected in the 

presence of CO and C3H6
 
(Fig. 31 and Fig. 33) indicates that in both cases the nitrate bands are 

no longer present in the spectra, thus providing evidence that both reducing agents can 

effectively reduce the stored nitrates.  Abdulhamid et al. [26] previously investigated the effect 

of the reductant used during NSR and concluded that the reducing activity follows the order: 

H2>CO>C3H6>>C3H8 .  While H2 and CO were reported to be significantly more active than 

C3H6, C3H6 was also shown to reduce stored NOX to an appreciable extent.  These previous 

results appear to be consistent with our FTIR data, although detailed information regarding the 

rate and extent of reduction cannot be discerned through examination of the FTIR spectra alone. 
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Figure 33.  In situ spectra collected during NO

350 °C.  Panes (A) and (B) display spectra collected during rich periods (conditions: 1000 ppm 

C3H6/He).  Spectra in pane (A) were collected during dry cycling; the spectra in pane (B) were 

collected in the presence of 1% H

 

Once again, the formation of a barium 

conditions even in the presence of 1% H

dramatically reduced in this case.  However, no aluminum NCO species are formed even in the 

absence of H2O since the correspond

Furthermore, the concentration of Ba NCO species is significantly lower than the corresponding 

case during the use of CO.  This observation can be attributed to either the 

H2O (from oxidation of C3H6) and/or to the lower reducing activity of C

situ can decrease the concentration of NCO species through one of the possible mechanisms 

already described, with the hydrolysis of the NCO species being the most likely 
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spectra collected during NOX storage-reduction cycling on 1Pt/17Ba/Al

anes (A) and (B) display spectra collected during rich periods (conditions: 1000 ppm 

/He).  Spectra in pane (A) were collected during dry cycling; the spectra in pane (B) were 

collected in the presence of 1% H2O. 

Once again, the formation of a barium NCO band (2162 cm
-1

) was observed under rich 

conditions even in the presence of 1% H2O, although their surface concentration was 

dramatically reduced in this case.  However, no aluminum NCO species are formed even in the 

O since the corresponding band at 2221 cm
-1

 is not present in the spectra.  

Furthermore, the concentration of Ba NCO species is significantly lower than the corresponding 

case during the use of CO.  This observation can be attributed to either the in situ 

) and/or to the lower reducing activity of C3H6.  Water formed 

can decrease the concentration of NCO species through one of the possible mechanisms 

already described, with the hydrolysis of the NCO species being the most likely 

reduction cycling on 1Pt/17Ba/Al2O3 at 

anes (A) and (B) display spectra collected during rich periods (conditions: 1000 ppm 

/He).  Spectra in pane (A) were collected during dry cycling; the spectra in pane (B) were 

) was observed under rich 

O, although their surface concentration was 

dramatically reduced in this case.  However, no aluminum NCO species are formed even in the 

is not present in the spectra.  

Furthermore, the concentration of Ba NCO species is significantly lower than the corresponding 

in situ generation of 

.  Water formed in 

can decrease the concentration of NCO species through one of the possible mechanisms 

already described, with the hydrolysis of the NCO species being the most likely explanation.  An 
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additional factor to consider is that by having the reductant potential of CO and C3H6 the same, 

we have effectively lowered the amount of carbon present during reduction to ⅓ of the 

corresponding carbon in the presence of CO.  The formation of surface NCO species during the 

reduction of stored nitrates by C3H6 was previously interpreted to suggest that the reduction by 

CO and C3H6 proceed through the same pathway [26].  It is possible however, that in situ 

generation of CO from C3H6 may be the pathway leading to NCO formation in the presence of 

C3H6.   

The presence of surface NCO during reduction in the presence of H2O even in small 

concentrations is particularly interesting, because it is generally believed that such species are 

rapidly hydrolyzed to NH3 in the presence of H2O [24,145].  The results from Figs. 30D, 31D 

and 33B suggest that the rate of their formation is faster than the rate of their hydrolysis, which is 

supported by the maximum in NCO concentration on the surface as the rich phase progresses in 

the presence of H2O.  However, at this point, and prior to the analysis of the rates of reactivity 

that follows, it is not possible to assess their involvement in the overall NOX reduction 

mechanism.  

Comparisons of the amounts of NCO formed over Pt- and Rh- containing catalysts is 

attempted in Fig. 34.  The data shown were generated by integrating the NCO bands formed 

under rich conditions and plotting the integrated area as a function of time.  As mentioned 

previously, the amount of stored NOX was approximately the same on the Pt/Ba/Al2O3 and 

Rh/Ba/Al2O3 catalysts, which is important since the concentration of NCO species formed is 

known to be dependent on the amount of stored NOX [43].  Therefore, the effect of the nature of 

the noble metal can only be observed when the amount of stored NOX during the lean phase is 

constant, as was the case here.  Indeed, the type of noble metal used appears to affect the 
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concentration of NCO species formed.  When CO is used as the reducing agent higher 

concentrations of NCO species are formed on the Pt/Ba/Al

opposite is true when C3H6 is used

 

Figure 34.  Comparison between the amounts of NCO species formed on (

( ) Rh/Ba/Al2O3 at 350 °C in the absence of H

(A) 9000 ppm CO/He; pane (B) 1000 ppm C
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2.4.4 THE STABILITY/REACTIVITY OF NCO SPECIES AT 350 °C 

In order to understand better the role of surface NCO in the NSR mechanism, their 

stability and reactivity was investigated in different gas mixtures.   

Spectra collected during exposure of a Pt/Ba/Al2O3 catalyst at the end of the rich phase to 

He or a 1000 ppm O2/He mixture at 350 °C are shown in Fig. 35.  The NCO bands at 2221 and 

2162 are present in the initial spectra since the NCO species were generated during and are 

present at the end of the rich phase.  The results indicate that the NCO species are relatively 

stable under He, since both bands were still clearly visible after 5 min.  The intensity of the band 

at 2221 cm
-1

 (Al-NCO species) decreased faster than that of the band at 2162 cm
-1 

(Ba-NCO 

species), indicating the higher stability of the Ba-NCO at this temperature.  The intensity of the 

carbonyl band at 2030 cm
-1

 also decreased with time, indicating that adsorbed CO is removed 

from Pt at this temperature, and thus CO poisoning due to strong adsorption on Pt appears 

unlikely at 350 °C, as previously suggested by Abdulhamid et al [26,27].  When a 1000 ppm 

O2/He mixture was used instead (Fig. 35B), the NCO species were rapidly removed from the 

surface, and no indication of any of the corresponding bands could be found in the spectra after 2 

min on stream.  This significant difference between the stability of NCO species in He and 

O2/He strongly indicates that a reaction is taking place between the surface NCO species and O2. 

Additional reactions were also considered with NO and H2O and the results of the 

corresponding experiments are summarized in Fig. 36, which shows the normalized integrated 

intensities of the NCO bands observed on Pt/Ba/Al2O3 and Rh/Ba/Al2O3 during exposure at the 

end of the rich phase to He, O2/He, NO/He and H2O/He mixtures at 350 °C.  Results obtained 

with the Ba/Al2O3 are also included in Fig. 36.  The concentration of NCO on this material is 

approximately 20% of that on Pt/Ba/Al2O3 or Rh/Ba/Al2O3.  Since the presence of noble metals 
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is known to catalyze the formation of these species [314,315], it is not surprising that their 

concentration is dramatically lower.   Actually, as previously outlined by Alexeev et al. [176], it 

is more surprising that these species are formed at all, especially in high enough concentrations 

to be observable, since the reaction was previously believed to occur only on the surfaces of 

metals.  Clearly, this is not the case and Forzatti et al. [290] recently described this phenomenon 

for Ba/Al2O3 in more detail.   

Some differences were observed between the NCO stability/reactivity in He, shown in 

Fig. 36A.  The reaction of NCO species with residual surface nitrites/nitrates cannot be excluded 

in this case, since Nova et al. [64] reported that CO treatment at 350 °C only removes 

approximately 80% of the NOX stored on Pt/Ba/Al2O3.  Similarly, Forzatti et al. [290] reported 

removal of only 22% of the NOX stored on Ba/Al2O3 and 43% of the NOX stored on Pt/Ba/Al2O3 

following CO TPSR treatment up to 400 °C.   While some of the stored NOX was converted and 

remained as NCO on the surface, residual nitrites/nitrates could be present as well.  The notion 

that a reaction with another surface species is responsible for the decreased intensities observed 

in Fig. 36A is also supported by previous reports by Forzatti et al. [290] who observed that NCO 

species were stable at 350 °C, even under vacuum, and Szailer et al. [24] who reported that 

thermal decomposition of surface NCO begins at temperatures slightly above 350 °C and is not 

completed even at 450 °C.  The results of Fig. 36A further show that the reaction of NCO with 

residual nitrites/nitrates is significantly slower than the corresponding reactions shown in the 

other gas mixtures investigated.  Surface distribution and diffusion of the NCO and the residual 

nitrites/nitrates could account for this effect, as well as for differences observed between the 

different metals.    
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Figure 35.  Spectra collected during exposure of a Pt/Ba/Al

phase to (A) He or (B) 1000 ppm O
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the reaction with NO (Fig. 36C).  These additional NCO species formed can be attributed to the 

reaction of NO with CO adsorbed on the surface or residual gas phase CO in the FTIR cell.  

Figure 36.  Normalized integrated intensity of

Pt/Ba/Al2O3 and ( ) Rh/Ba/Al2O

1000 ppm O2/He, (C) 1000 ppm NO/He and (D) 1000 ppm H
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difference however, is observed in both cases over the noble metal containing catalysts.  In 

contrasts, the rapid removal of NCO in the presence of H
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similar rates observed in this case with all three materials demonstrate that a precious metal is 

not necessary for this reaction to occur.  Finally, the reactions of surface NCO with NO, O2 and 

H2O on Pt/Ba/Al2O3 and Rh/Ba/Al2O3 all exhibited similar activity, with the majority of the 

NCO species being removed from the surface after approximately 2 min.   

Fig. 37 shows the evolution of N2 from the Rh/Ba/Al2O3 catalyst during the rich phase 

and subsequent exposure to He, O2 and NO.   As shown in Fig. 37A, N2 is generated during the 

rich phase, but not during subsequent exposure to He after the rich phase ends, although the 

results of Fig. 36A indicate a gradual decrease in surface NCO concentrations in this case.  This 

indicates that the NCO species present on the Rh/Ba/Al2O3 surface at the end of rich period did 

not significantly decompose to gas phase N2 or react quickly enough with residual 

nitrites/nitrates to produce N2.  It is possible that the decomposition products of the surface NCO 

were re-adsorbed as nitrites/nitrates, but an increase in surface nitrite/nitrate concentrations could 

not be observed in our results due to strong overlapping of the nitrite/nitrate and carbonate bands.  

Forzatti et al. [290] however, were able to observe formation of nitrites during similar 

experiments.  In our case, the concentration of NCO species on the surface may simply not have 

been high enough to allow us to observe such formation.   

Exposure of the surface NCO species to 1000 ppm O2/He resulted in the formation of 

significant amounts of N2, as shown in Fig. 37B.  Evolution of N2 during two discrete periods – 

i.e. during the rich phase and during the subsequent lean phase – has previously been observed 

by Breen et al. [16] and Scholtz et al. [28,319,320] during NSR operation.  At the end of rich 

phases, nitrites/nitrates, carbonates and NCO species were the only species observed on the 

surface.  Exposure of nitrites/nitrates or carbonates to O2 increases the stability of these species 

and does not result in evolution of N2.  Some authors [16] have also suggested the NH3 may be  
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Figure 37.  N2 profiles (m/z = 28) obtained during the reaction of stored NO

subsequent reaction of residual NCO species with (A) He, (B) 1000 ppm O

NO/He on Rh/Ba/Al2O3 at 350 °C.
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stored on the catalyst during the rich phase, but the formation of significant amounts NH3 in the 

absence of H2O and H2, as well as subsequent storage and oxidation to N2 is unlikely under our 

conditions [175].  It is therefore reasonable to assume that the N2 produced during the exposure 

to O2 is the product of the reaction between surface NCO and O2.  Integration of the two N2 

peaks observed in our case (Fig. 37B) indicated that approximately 30% of the total N2 

production resulted from the reaction of NCO species with O2.   

Exposure of the surface NCO species to 1000 ppm NO/He also resulted in the formation 

of a second N2 peak, which in this case was even larger than the first N2 peak (Fig. 37C), 

constituting approximately 70% of the total N2 produced.  Comparison between the N2 peaks 

shown in Figs. 37B and 37C confirmed while the first peaks were approximately the same in 

both cases, the N2 peak observed during NO exposure was approximately 5 times larger than the 

one observed during O2 exposure.  Stoichiometric calculations indicate that reaction of NCO 

species with NO theoretically results in twice as much N2 produced.  Since in both cases similar 

amounts of NCO species were completely removed from the catalyst surface (see Figs. 36B and 

27C) the remaining N2 formed is in all likelihood the result of reactions between the gaseous NO 

and other surface reducing agents.  Evidence to this direction is provided in Fig. 36C, which 

shows additional surface NCO formation upon introduction of NO, indicating that an NCO 

species may act as an intermediate even for this addition N2 formation.  The small increase 

observed in Fig. 36C is misleading since it represents the net difference during the first 30-60 s 

between NCO formation and consumption.  NCO consumption during this initial period is at its 

highest point, as indicated by the very steep slope of the N2 production curve in Fig. 37C. 

Overall, the results of Fig. 36 and 37 indicate that surface NCO contribute to a significant 

percentage of the overall amount of N2 formed, when CO is used as the reducing agent.  While it 
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is difficult to quantify the exact amount, it could exceed in some cases 30% of the total.  

Furthermore, such species could be responsible for N2 retention on the NSR catalyst surface 

during the rich phase and contribute to a second N2 release observed during NSR operation at the 

onset of the lean phase. 

 

2.5 CONCLUSIONS 

The results of in situ FTIR measurements conducted with Pt/Ba/Al2O3 and Rh/Ba/Al2O3 

catalysts of very similar molar loading and dispersion of precious metals indicate that surface 

nitrites are the predominant NOX storage form at 250 °C, while surface nitrates become the 

predominant storage form at 350 °C.  The presence of water did not have a significant effect 

during storage.  Surface isocyanates (NCO) were formed under a variety of conditions 

investigated and their concentration was dependent on the temperature, the reductant selected, 

the presence of H2O and the type of precious metal used.  The highest concentrations of surface 

NCO species were observed during dry conditions with CO used as the reductant at 350 °C.  The 

NCO stability measurements demonstrate that these species are stable in CO and moderately 

stable in He.  In contrast, the reaction of surface NCO species with NO and O2 is fast and 

catalyzed by precious metals, with no difference observed between Pt and Rh.  A similarly fast 

reaction is also observed with H2O, even in the absence of the noble metal component.  

Comparison of N2 evolution amounts during the rich phase and subsequent reaction of residual 

NCO species with O2 and NO confirmed that reaction of NCO species could contribute 

significantly to the total amount of N2 formed, when CO is used as the reducing agent.  These 
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species represent a reduced form of stored N2 that could be responsible for N2 release observed at 

the onset of the lean phase. 
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CHAPTER 3.  NH3 FORMATION OVER A LEAN NOX TRAP (LNT) SYSTEM: EFFECTS 

OF LEAN/RICH CYCLE TIMING AND TEMPERATURE 

3.1 PREFACE 

A commercial lean NOX trap (LNT) catalyst containing Pt, Pd, Rh, BaO, and CeO2 was 

evaluated in this investigation.  The effects of lean/rich cycle timing on the NOX, CO and C3H6 

conversions and on the NH3 and N2O selectivities were considered.  Two distinct lean/rich 

cycling regimes were identified.  At low temperatures, NOX release and reduction were 

kinetically limited.  As a result, a longer, lower-concentration rich dose favored increased cycle 

averaged NOX conversions.  For example, extending the rich period from 5 to 15 s at 250 °C, 

while holding the overall reductant dose constant, resulted in an increase in cycle averaged NOX 

conversion from 59 to 87%.  At high temperatures, the opposite was found to be true.  Above 

450 °C, NOX release and reduction occurred very rapidly and shorter, higher concentration rich 

doses yielded significantly higher NOX conversions.  For example, extending the rich period 

from 5 to 15 s at 500 °C, while holding the overall rich dose constant, resulted in a decrease in 

the cycle averaged NOX conversion from 76 to 54%.  The selectivities to NH3 and N2O were 

found to be primarily a function of temperature, with both being higher at lower temperatures.  

The effect of cycle timing and reductant concentration were of secondary importance.  In 

contrast, NH3 and N2O yields were significantly affected by the cycle timing since they depend 

on the NOX conversion.  Therefore, any combination of changes in the lean/rich timing protocol 

or reductant concentrations that resulted in increased NOX conversion also resulted in increased 

NH3 and N2O yields for a given temperature.  As a result, concerted control of NH3 generation
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 by varying the lean/rich cycle timing was demonstrated, although the effect was relatively small 

near the optimum temperature (i.e., 350 – 400 °C) of the LNT catalyst.  In contrast, both at lower 

and higher temperatures, variations in the rich cycle duration resulted in NH3/NOX ratios that 

could extend the region of operation for a close-coupled LNT-SCR system.  However, N2O yield 

also increased with NH3 yield under the same conditions. 

3.2 INTRODUCTION 

Lean-burn engines are more fuel efficient and produce less overall CO2 per mile when 

compared to traditional stoichiometric-burn ones.  However, meeting NOX emission regulations 

for lean-burn engines through the use of advanced catalytic converter technologies still 

represents a significant technical challenge.  Over the past 15 years, lean NOX trap (LNT) [4] and 

selective catalytic reduction (SCR) [321] catalysts have been identified as two promising systems 

for the removal of NOX from the exhausts on lean-burn engines.  In several recent publications 

and patents, there has been considerable discussion regarding the advantages of combining these 

two technologies into a coupled LNT-SCR system [154,156,283,322–338].  As a brief review, 

LNTs are designed to function under periodic lean/rich environments, where NOX is stored in the 

form of nitrites or nitrates on a storage component (e.g., Ba) during lean periods typically lasting 

60 - 120 s [4,339].  As time elapses, the storage component becomes saturated with NOX and a 

subsequent rich step, typically lasting 1 - 5 s, must be employed to reduce the stored NOX and in 

the process regenerate the storage component.  Catalytic formulations used commercially 

generally include platinum group metals (PGM; e.g., Pt, Pd and Rh) supported on a BaO and 

CeO2-modified γ-Al2O3 [4].  While N2 is obviously the most desirable product during NOX 

reduction, NH3 and N2O can also be formed and under certain conditions, the selectivity to these 
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undesirable by-products can be significant.  For example, Ren and Harold [340] reported 

selectivities to NH3 of 40%, or greater, for a series of model LNT catalysts operating below 200 

°C.  At similar temperatures, Bonzi et al. [330] attributed the high selectivity to NH3 to a 

combination of significant NH3 formation and slow subsequent reaction of the NH3 formed with 

the remaining stored nitrites/nitrates.  This reaction becomes significantly faster at higher 

temperatures, thus contributing to reduced NH3 selectivities.  While NH3 formation over the 

LNT catalyst is undesirable in a single catalyst system, it also clearly demonstrates the potential 

for a coupled LNT-SCR configuration. 

In contrast to LNT catalysts, NH3-SCR catalysts are operated under steady-state 

conditions and were originally designed for use in stationary applications [2,341].  Current 

commercial SCR catalytic formulations include V2O5-WO3/TiO2 or Cu/Fe exchanged zeolites 

[2,341], with the zeolite-based materials favored for automotive applications due to their lower 

temperature activity, as well as their ability to store significant amounts of NH3 under transient 

conditions [342,343].  Initially, commercialization of zeolite-based SCR catalysts was limited 

due to hydrothermal stability issues, but recent advances in this area have led to the development 

of hydrothermally stable Cu-zeolite catalysts that are active over a broad temperature range 

[342,344].  Zeolites are particularly attractive for a coupled LNT-SCR configuration because of 

their ability to store NH3 generated over the LNT catalysts during short rich cycles, which is 

stable under lean conditions.  NH3 thus stored can be used in the subsequent lean cycle to reduce 

NOX that is not trapped by the LNT catalyst.  As outlined by Bonzi et al [330], the LNT-SCR 

configuration has the advantage of both increasing the selectivity to N2 and the overall NOX 

conversion when compared to a single LNT system.  For example, Lindholm et al. [338] reported 

a cycled averaged NOX conversion of 99.5% for an LNT-SCR system operating at 300 °C, but 
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also observed increases in the NOX conversion and N2 selectivity over the entire temperature 

range (200 – 400 °C) investigated when compared to a single LNT system.  Similarly, Xu et al. 

[283] recently reported that LNT-SCR systems have the additional benefit of requiring a lower 

PGM content for the LNT, increasing the temperature window for high NOX conversion and 

mitigating catalyst deactivation due to aging.  In summary, a consensus has emerged that 

addition of an SCR catalyst, either in series, as a physical mixture or in a layered geometry, to an 

LNT exhaust system can result in significant improvements in overall catalytic performance.  

However, the majority of these investigations have either been performed under typical LNT 

cycling conditions (e.g., 60 s lean, 5 s rich) or under extended isothermal step conditions and the 

role of cycle timing has not been investigated in detail.   

In this manuscript, the role of both lean and rich LNT cycle timing is addressed with 

specific emphasis placed on the amount of NH3 generated in relation to the amounts NOX and 

CO slip from the LNT catalyst.  In addition, N2O formation was closely monitored under these 

conditions.  Finally, the concept of concerted control over the NH3 generation by the control of 

cycle timing and conditions is introduced with the goal optimizing the LNT-SCR system as a 

function of the under-floor catalyst temperature. 

3.3 EXPERIMENTAL 

3.3.1 CATALYTIC MATERIAL 

A fully-formulated LNT monolith (wash-coated honeycomb cordierite monolith removed 

from a Lean-GDI, BMW 120i, Model Year 2009) was utilized in the present investigation.  On 

the vehicle, the LNT catalyst brick of 413 cell per square inch (cpsi) is used in an under-floor 

configuration.  The catalyst has now been adopted as the new representative commercial LNT 
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catalyst in the Crosscut Lean Exhaust Emissions Reduction Simulations (CLEERS) research 

community [345].   

3.3.2 CATALYST CHARACTERIZATION 

Semi-quantitative metals screening of the LNT catalyst using Inductively Coupled 

Plasma - Mass Spectrometry (ICP-MS) was conducted by Galbraith Laboratories, Inc. 

(Knoxville, Tennessee).  Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-

AES), which afforded quantitative results, was also conducted by Galbraith Laboratories, Inc.   

A JEOL JXA-8200 SuperProbe Electron Probe MicroAnalyzer (EPMA) was used to map 

the elemental composition of the catalyst washcoat.  Samples were prepared for imaging by 

mounting them in epoxy and polishing.  The spot size was approximately one cubic micron, 

which is smaller than the typical grain size of the constituent phases.  A Hitachi 4800 field 

emission gun scanning electron microscope (FEG-SEM) with an EDAX energy dispersive 

spectroscopy (EDS) x-ray detector was also used to measure the element composition of 

individual grains.  Since the sample was heterogeneous and porous, no attempt was made to 

calibrate the x-ray intensities with standard samples.  Therefore the compositional data is likely 

accurate to no less than one percent and should be viewed more as a relative comparison between 

different grains in the wash coat. 

3.3.3 CATALYTIC EVALUATION 

Lean/rich cycling was performed using a laboratory bench-flow reactor, as described in 

more detail elsewhere [135,346].  Briefly, the LNT monolithic core (2.1 cm wide X 5.5 cm long; 

SV=30,000 hr
-1

; ≈9150 standard cm
3
/min) was tightly wrapped in Zetex insulation tape and 

inserted into a horizontal quartz tube reactor.  The reactor was heated using a horizontal bench-
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top furnace (Lindberg/Blue M).  Lean/rich gas mixtures were prepared using pressurized gas 

cylinders (UHP, Air Liquide) and a system of mass flow controllers (Unit Instruments Series 

7300, Kinetics Electronics).  A rapid switching 4-way valve system was used to alternate 

between the lean and rich gas mixtures.  Water was introduced using a peristaltic pump (Cole-

Parmer) that fed into a heated, flash-vaporization zone held at 350 °C.  All gas lines downstream 

of the water introduction zone were heated and quartz chips were placed upstream of the 

monolithic core to ensure that the feed gas temperature reached the set point temperature prior to 

contacting the catalyst.  Three thermocouples were used to measure the temperature.  The first 

was placed 1 cm upstream of the core and was used to record the inlet/set-point temperature.  

The second thermocouple was placed in the middle of the monolithic core and was used to 

record the actual monolith temperature.  The third was placed 1 cm downstream of the core and 

was used to record the temperature exiting the core.  After exiting the reactor, the gas was fed to 

an MKS MultiGas
TM

 2030 HS FT-IR analyzer, which allowed for continuous tracking (5 Hz) of 

NO, NO2, N2O, NH3, CO, C3H6, CO2 and H2O concentrations.  Prior to the reactor 

measurements, the as-received catalyst was “de-greened” at 700 °C in a 10% H2O/air mixture for 

16 h to establish reproducible performance.  Unless otherwise denoted, all calculations were 

performed using the last 4 cycles obtained during lean/rich cycling, where Eqns. 14-16 were used 

to calculate the cycle averaged NOX, CO and C3H6 conversion, respectively.  

���� = ������� − ���� !"##��
������� × 100 

(14) 

�'� = �(�)*+ − �(�,-.//*+
�(�)*+ × 100 

(15) 

�'012 = �(�34��� − �(�34 !"##��
�(�34��� × 100 

(16) 
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Eqns. 17-20 were used to calculate the NH3 and N2O yields and selectivities, 

respectively.  The total amount of products formed was calculated based on the total amount of 

NOX consumed.  Since N2 formation could not be quantified by the FTIR analyzer, the N2 yield 

and selectivity was calculated using a nitrogen mass balance by assuming that NH3, N2O, and 

NOX were the only nitrogen containing by-products formed.   

5�10 = ��3�678+9:*+����)*+ × 100 
(17) 

;�10 = ��3�678+9:*+����)*+ × ���� × 100 
(18) 

5�<� = ����678+9:*+����)*+ × 100 
(19) 

;�<� = 2 × ����678+9:*+����)*+ × ���� × 100 
(20) 

A total of 81 sets of conditions were considered in this investigation, consisting of 

combinations of nine temperatures (150 – 550 °C, in 50 °C increments) and nine different cycle 

timing protocols.  The lean period gas concentration was held constant at 500 ppm NO, 8% O2, 

5% H2O and 5% CO2 in N2.  The rich period included a variable amount of reductants with a 

balance of 5% H2O and 5% CO2 in N2.  The required amount of reductants (i.e., H2, CO and 

C3H6) in the rich dose was calculated by adding the stoichiometric amount of reductant required 

to completely reduce all of the NOX fed plus the required amount of reductants required to 

consume all of the O2 storage capacity of the LNT catalyst.  The calculated rich dose (i.e., the 

total number of moles of reductant required) was then held constant and the rich cycle duration 

was varied.  Therefore, shorter rich cycle times (e.g., 5 s) contained higher concentrations of 

reductants, while longer rich cycle times (e.g., 10 and 15 s) contained lower concentrations of 
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reductants.  Once the total amount of reductants needed was determined, their relative 

concentrations were calculated based on a 18:6:1 ratio for CO:H2:C3H6, respectively.  This ratio 

is considered to be representative of rich engine exhaust [347]. 

The oxygen storage capacity (OSC) on the LNT catalyst was measured by cycling (60 s 

lean / 5 s rich) in a lean gas mixture comprised of 10% O2, 5% H2O and 5% CO2 in N2 and a rich 

gas mixture comprised of X% CO, 5% H2O and 5% CO2 in N2.  The CO concentration was 

adjusted during this cycling (0.1% increments) until consistent breakthrough of CO was 

observed by both the FT-IR analyzer and lambda sensor (ECM AFRecorder 1200A air-fuel ratio 

meter).  Fig. 38 demonstrates the OSC protocol for cycling at 550 °C.  The results demonstrate 

that a CO concentration of 1.6% resulted in minimal CO breakthrough during rich periods.  The 

lambda sensor reading, which was used as a secondary metric for CO breakthrough 

(λ<1.00=rich), never dipped below 1.00, which implied incomplete consumption of the OSC.  

Alternatively, when the CO concentration was increased to 1.7%, breakthrough of CO was 

consistently measured by the FT-IR analyzer.  In this case, the CO breakthrough also coincided 

with a lambda sensor reading of approximately 0.96 at the end of the rich period.  Therefore, an 

OSC of 1.7% CO was used in the calculations to determine the reductant concentration necessary 

during the rich periods at 550 °C.  Table 7 displays the OSC values measured for the LNT 

catalyst as a function of temperature.  For temperatures below 300 °C, a value of 1.6% was 

assumed because the kinetics of O2 consumption required longer times than provided in the 5 s 

rich period and accurate measurements could no longer be obtained.   

Table 8 shows the calculated reductant concentrations for different cycling times for an 

OSC corresponding to 1.6% CO.  As shown in the Table, these concentrations varied both with 

the lean cycle timing (since the total amount of NOX fed varies in this case) and rich cycling 
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timing (since the total amount of reductants fed has to remain constant regardless of the length of 

the rich period).  Slightly higher concentrations were used at temperatures above 450 °C due to 

the increase in the OSC to 1.7% CO (not shown for brevity).   

 

 

 

Figure 38.  OSC measurement performed at 550 °C over the LNT catalyst (See experimental 

section for conditions). 
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Table 7.  OSC values measured for the LNT catalyst at different temperatures. 

Temperature OSC 

( °C) (CO %) 

350 1.6 

400 1.6 

450 1.7 

500 1.7 

550 1.7 

 

 

Table 8.  Calculated reductant concentrations for the cycle timing protocols used in this 

investigation in the 150 – 400 °C range (OSC = 1.6% CO). 

 Reductant Concentrations 

Lean/Rich Timing 

(s) 
CO 

(%) 
H2 

(%) 
C3H6 

(%) 

60/5 2.01 0.67 0.112 

60/10 1.01 0.34 0.056 

60/15 0.67 0.22 0.037 

120/5 2.83 0.94 0.157 

120/10 1.42 0.47 0.079 

120/15 0.94 0.31 0.052 

180/5 3.65 1.22 0.203 

180/10 1.82 0.61 0.101 

180/15 1.22 0.41 0.068 

 

3.4 RESULTS AND DISCUSSION 

3.4.1 CATALYST CHARACTERIZATION 

Semi-quantitative inductively Coupled Plasma-Mass Spectrometry (ICP-MS) analysis of 

the LNT catalyst indicated the presence of Mg, Al, Ce, and Ba as major components.  Other 

elements of significance included Zr, La, Pt, Pd, and Rh.  The results of inductively Coupled 

Plasma-Atomic Emission Spectroscopy (ICP-AES) also indicated the presence of Pt, Pd, Rh, Ba, 
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Ce, Zr, and La on the LNT catalyst used.  The loadings of these elements are summarized in 

Table 9.  

Table 9.  Elemental composition of the LNT catalyst used in this investigation.   

 Lean GDI, BMW 120i (2009) 

 loading (g/L) 

Pt 2.2 

Pd 0.8 

Rh 0.3 
Total PGM (g/L) 3.3 

PGM Ratio (Pt/Pd/Rh) 7/3/1 

Ba 19.9 

Ce 55.5 

Zr 4.3 

La 2.5 

 

The wash coat was composed of three separate layers of roughly equal thickness, which 

suggests that three separate dip coats were conducted during processing.  Of the elements 

measured, the Ba elemental map obtained by EPMA revealed these three layers the best, as 

shown in Fig. 38.  Mud-cracks normal to the substrate surface, which stop at the layer interfaces, 

also indicate that three separate drying steps were performed during processing of the wash coat.  

The elemental composition of these three layers appears to be identical. 

Three compositionally distinct domains (or grains) were observed in the washcoat using 

EPMA: a CeO2 phase with low amounts of La, Zr, Pt and Pd (Ce/Zr mixed oxide domain); a 

Mg/Al oxide spinel phase with some Ce and Pd also present (Mg/Al mixed oxide domain); and 

in a few spots, an Al2O3 phase with Rh, as well as some Pd present (Al oxide domain).  In 

addition to these three domains, there was another type of grain rich in Ba (results not shown), as 

in the case of the old CLEERS reference LNT [135,346].  As discussed in the experimental 

section however, no attempt was made to calibrate the x-ray intensities with standard samples 

and the results shown in Fig. 41 were included as a qualitative comparison between different 
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grains in the wash coat.  Generally, the number of Ba

which may indicate a more uniform Ba dispersion in this LNT catalyst in comparison to a 

different LNT catalyst formulation considered in previous investigations 

mixed oxide domain exhibits a bimodal grain size

interspersed with submicron-sized grains

bright particles corresponding to the Ce/Zr mixed oxide domain and the darker matrix 

representing the Mg/Al mixed oxide domain.  The composition

Mg/Al mixed oxide domains measured with EDS are shown in Fig

Figure 39.  EPMA map for Ba in a washcoat corner of the front section of the

brick.  White dashed lines separate

119 

grains in the wash coat.  Generally, the number of Ba-rich grains appeared to be rather limited, 

hich may indicate a more uniform Ba dispersion in this LNT catalyst in comparison to a 

different LNT catalyst formulation considered in previous investigations [135,346]

a bimodal grain size distribution with large 5 

sized grains.  Fig. 40 shows a cross-section of the washcoat with the 

bright particles corresponding to the Ce/Zr mixed oxide domain and the darker matrix 

the Mg/Al mixed oxide domain.  The compositions of the Ce/Zr and coarse

mains measured with EDS are shown in Fig. 41. 
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Figure 40.  SEM image of the washcoat cross

Figure 41.  Approximate elemental compositions in weight percentage of the two primary 

phases in the washcoat as measured by EDS (carbon signal originating from t

epoxy). 
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3.4.2 REPRESENTATIVE LEAN/RICH CYCLING OVER THE LNT CATALYST 

Reactor effluent concentrations observed at 300 °C during 60 s lean/5 s rich cycling over 

the LNT catalyst used in this investigation are shown in Fig. 42 as a representative example for 

the performance of this catalyst.  As expected, low concentrations of NOX were observed during 

the lean period indicating that the majority of NOX was stored on the LNT catalyst.  As the 

reactor feed was switched to the rich mixture (after 60 s) and the regeneration of the LNT 

catalyst was initiated, a significant un-reacted NOX release was observed simultaneously with the 

formation of N2O.  Previous literature reports have addressed both of these observations 

[140,151,346,348–351], with the NOX release attributed to the slower NOX reduction kinetics at 

this temperature in comparison to the surface nitrite/nitrate decomposition [140,151] and the 

N2O formation linked to the relative concentrations of surface NO and N intermediates present 

[140,151,346,348–351].  Subsequent formation and breakthrough of NH3 and CO were also 

observed during the rich cycle, with an approximately 2.5 s delay between the onset of the rich 

cycle and the appearance of these products in the reactor outlet.  The delay for NH3 has 

previously been attributed to the reaction of NH3 formed upstream on the LNT catalyst with 

downstream surface nitrites/nitrates and oxygen stored on the catalyst [23,60,286,351,352].  

Likewise, the delay in CO breakthrough is most likely a combination of several contributing 

factors including the amount of CO reacting with stored NOX and oxygen, as well as its 

participation in the water gas shift reaction (WGS).  The near-simultaneous appearance of CO 

and NH3 in the reactor outlet during reduction is an important feature of the LNT catalyst 

behavior in light of its potential use in an LNT-SCR configuration.  While NH3 could be stored 

in the SCR material, CO storage and/or oxidation over the downstream SCR catalyst under rich 

conditions is highly unlikely.  Therefore, for practical implementation of the LNT-SCR 
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technology, the amount of CO slip from the LNT catalyst needs to be closely monitored as a 

function of operating conditions and or catalytic formulation and eventually converted to CO2.   

Table 10 summarizes the performance of the LNT catalyst at 300 °C (60 s lean/5 s rich) and 

provides corollary results calculated from the results shown in Fig. 42.  The majority of NOX fed 

to the reactor during the lean cycle is stored and reduced during the subsequent rich step, 

resulting in a cycle averaged NOX conversion of 99.2%.  Interestingly, the selectivity to N2 for 

this cycle timing protocol and temperature is fairly low (59.2%), in agreement with other 

investigations conducted under similar conditions [151,340].  A significant percentage of the 

stored NOX (29.0%) reacted to form NH3, where the NH3 production is approximately 62 

µmol/cycle, while the total amount of NOX slip is only 1.6 µmol/cycle.  The difference between 

the amount of NH3 produced and NOX slip as well as the difference in time evolution of the two 

species demonstrate the need for NH3 storage on the SCR, since equimolar NH3 and NOX 

amounts are needed for optimum LNT-SCR operation.  The selectivity to N2O was also high 

(11.8%) under these conditions, while CO and C3H6 conversions were relatively low (87.1 and 

77.5%, respectively).  Once again, we should point out that the data from this cycling condition 

were included only as a representative example because they demonstrate both the potential 

advantages and drawbacks of LNT operation under conditions favorable for NH3 production.  In 

subsequent sections, the NH3 and N2O trends will be discussed in more detail. 
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Figure 42.  A 60 s lean/5 s rich cycling experiment performed at 300 °C, where the NOX, ( ) 

NO2, ( ) N2O, ( ) NH3 and (x) CO concentrations are plotted as a function of cycle time. 

Table 10.  Summary of the cycling performance of the LNT catalyst at 300 °C (60 s lean/5 s 

rich). 

 60/5 

XNOx 99.2 % 

XCO 87.1 % 

XC3H6 77.5 % 

NOX Fed (lean) 214.8 µmol/cycle 

NOX Stored 214.2 µmol/cycle 

NOX Slip (total) 1.6 µmol/cycle 

NOX Slip (rich) 1.1 µmol/cycle 

NH3 Produced 61.9 µmol/cycle 

N2O Produced 12.5 µmol/cycle 

YNH3 28.8 % 

YN2O 5.8 % 

SNH3 29.0 % 

SN2O 11.8 % 

SN2 59.2 % 
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3.4.3 CYCLE AVERAGED NOX, CO AND C3H6 CONVERSIONS 

The results shown in Fig. 43 summarize the cycle averaged NOX conversions measured 

in this investigation at different temperatures and under different lean/rich cycle timing 

protocols.  These results indicate that with respect to NOX conversion the optimum operating 

temperature for this LNT catalyst is between 350 and 400 °C.  Cycling conducted using a 60 s 

lean period resulted in cycle averaged NOX conversions over 80% from 300 – 450 °C 

temperature range.  However as the extent of the lean period duration was increased, the 

temperature window for high NOX conversion was decreased.  As a result, longer lean periods 

(e.g., 120 and 180 s, respectively) can only be used if the LNT catalyst is operated at, or very 

near, an optimum temperature of 350 – 400 °C.  For all timing protocols investigated, dramatic 

decreases in the cycle averaged NOX conversion were observed at temperatures below 300 °C 

and above 450 °C.  Under such conditions, higher cycle averaged NOX conversions were 

observed for longer rich periods in the low temperature regime (i.e., below 300 °C).  By contrast 

at temperatures above 450 °C, the highest cycle averaged NOX conversions were observed for 

shorter (5 s) rich periods.  The results for the two extreme cases (i.e., 250 and 500 °C) are further 

displayed in the two limiting cases displayed in Fig. 44.   
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Figure 43.  Cycle averaged NOX conversions obtained for the LNT catalyst as functions of 

temperature for different lean/rich cycle timing protocols. 
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Figure 44.  Cycle averaged NOX conversions obtained for the LNT catalyst for different 

lean/rich cycle timing protocols at 250 and 500 °C. 
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number of moles of reductant was held constant, as discussed in the experimental section.  Thus 

it becomes apparent that because of the slow NOX release and reduction kinetics a more extended 

temporal distribution of the reductants can optimize the NOX conversion characteristics of the 

LNT catalyst.  At 500 °C, NOX release and reduction are no longer kinetically limited and as a 

result, shorter, high concentration rich doses are needed to effectively reduce the NOX that is 

rapidly released from the LNT catalyst.  This behavior is not surprising since thermal release of 

NOX is favored even in the absence of a reducing agent at temperatures exceeding 470 °C for 

ceria containing LNTs [150].  In summary, longer, lower concentration rich doses result in 

higher NOX conversions at below 300 °C, while shorter, higher concentration rich doses achieve 

the same result at temperatures above 450 °C.  Breen et al. [353] similarly observed increased 

NOX conversions for longer, lower concentration rich doses, but concluded that such timing 

protocols were always more effective regardless of the operating temperature.  Al-Harbi et al. 

[354] also observed increased NOX conversions at 500 °C for shorter rich periods, but the effects 

in their case was more modest than what was observed over the LNT catalyst used in our study.  

Ultimately, Al-Harbi et al. [354] concluded that the simultaneous increase in NH3 generation for 

the shorter, higher concentration, rich doses at high temperatures negated the benefits of 

increased NOX conversion.  However in an LNT-SCR configuration, NH3 generation can be 

mitigated by the downstream SCR catalysts and might even be desirable. 

The cycle averaged CO and C3H6 conversions are shown in Fig. 45.  Since both the CO 

and C3H6 conversions were largely insensitive to the cycle timing, only data for the 60 s lean 

period are shown.  In all cases, the LNT catalyst exhibited low CO and C3H6 conversions below 

200 °C, indicating a low reactivity between these two reductants and NOX at these temperatures.  

This is consistent with previous results reported by Abdulhamid et al. [26], which indicate that 
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CO is not as effective as H2 in reducing NOX at temperatures below 200 °C.  Furthermore,  more 

recent investigations by different groups [28,64,288,289,339] indicate that hydrolysis of 

isocyanates and hydrogen production via the WGS reaction exhibit significant activity above 250 

°C, which may explain the higher consumption of CO observed in Fig. 45 at these temperatures.  

However, the most important factor for the higher CO conversions observed in the 300 – 500 °C 

temperature range may be the relative amounts of NOX stored and CO fed, as shown in Fig. 46, 

since it becomes apparent that at these temperatures, the CO conversion tracks very closely the 

amount of NOX stored on the LNT catalyst.  Above 500 °C, where the thermal desorption of 

NOX becomes thermodynamically favored, the CO conversion is no longer strongly related to the 

amount of NOX stored, but it also appears to be affected by the WGS reaction equilibrium 

conversion, as implied by a comparison of the slopes of the two lines.  The results in Fig. 46 

suggest that CO may be involved in two parallel reactions; the direct reduction of stored NOX 

and the WGS reaction, which yields H2 that can subsequently reduce stored NOX.  The relative 

contribution appears to be dependent reduction temperature.   

The C3H6 cycle-averaged conversion curves shown in Fig. 45B resemble typical, steady-

state light-off curves although the data were collected under cycling conditions.  Once again, the 

differences due to the length of the rich cycle are minimal.  In the absence of H2O, Abdulhamid 

et al. [26] reported that propylene shows limited activity towards the reduction of NOX when 

compared to CO and H2 at 250 °C, but similar activity with the other two reductants at 350 °C.  

Furthermore,  Resini et al. [355] reported that the steam reforming of propene over a Pd-

Cu/Al2O3 catalyst yielding CO and H2, which could reduce stored NOX as discussed previously, 

becomes significant at temperatures above 275 °C.  Both reports appear to be consistent with the 

data of Fig. 45, which suggests increased activity above 200 °C, reaching complete conversion of 
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C3H6 at 350 °C.  However, it is not possible to differentiate from this data between the amounts 

of C3H6 consumed during the direct reduction of NOX and the amount converted to CO and H2 

via steam reforming.  Finally, the results of Fig. 45B indicate that hydrocarbon slip may 

represent a problem for LNT catalyst operation lower temperatures, where NH3 formation is 

favored, as will be discussed below. 

 

 

 

Figure 45.  Cycle averaged CO (A) and C3H6 (B) conversions obtained for the LNT catalyst as 

functions of temperature for different lean/rich cycle timing protocols. 
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Figure 46.  Cycle averaged CO conversion obtained for the LNT catalyst in comparison to the 

amount of NOX stored and the WGS equilibrium conversion as a function of temperature (60 s 

lean / 5 s rich). 
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is observed, while the corresponding NOX slip is 21% and 13% of the total NOX fed, 

respectively.    Since the SCR reaction requires a 1:1 NH3:NOX ratio, as shown Eqn. 18, 

 

4�3� + 4�� + �� → 4�� + 63�� (18) 

 

under these conditions the amount of NH3 generated is approximately twice the amount needed 

to operated a downstream SCR catalyst. 

Consequently, the SCR catalyst would quickly become saturated with adsorbed NH3 and 

significant concentrations of NH3 instead of NOX could appear in the final exhaust stream.  This 

indicates that in this case the overall LNT-SCR configuration operates with excess reducing 

agent due to the longer than needed rich cycles.  Not surprisingly then, when a 5 s rich cycle is 

used, the NOX slip is approximately 41%, while the NH3 yield is only 29%.  In this case, more 

NOX would be slipped from the catalyst system than NH3.  The downstream SCR catalyst would 

improve the cycled averaged NOX conversion, as previously observed by Lindholm et al. [338], 

but not all of the NOX slipped from the LNT could be converted to N2.  In summary, the results 

shown in Fig. 47 can be used to determine the theoretical “best-case” scenario for an LNT-SCR 

configuration for a specific set of conditions, assuming that all of the NH3 produced over the 

LNT catalyst can be stored on the SCR and subsequently used to reduce NOX.  However in 

practice, complete storage and reaction of the NH3 formed may not be possible.  Further analysis 

of the results in Fig. 47 indicates the presence of two temperature ranges for potential application 

of concerted control of the cycling timing protocol in an LNT-SCR configuration: one between 

250 and 300 °C, and the second between 400 and 450 °C.  Significant NOX slip was observed 

below 250 °C and above 450 °C without sufficient NH3 formation observed to allow for 
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operation of a downstream SCR catalyst.  On the other end of the spectrum, almost complete 

NOX conversion is observed between 300 and 400 °C; in this case, the NH3 formed over the LNT 

catalyst represents a problem because very little NOX remains to react with NH3 over the SCR 

catalyst. 

Regardless of the length of the lean/rich cycle used, the NH3 yield peaked at either 250 or 

300 °C (Fig. 47), but NH3 selectivity always reached a maximum at 250 °C, as shown in Fig. 48.  

The NH3 selectivities measured at 250 °C are in excellent agreement with previously reported 

results by Ren and Harold [340] over a similar series of catalysts even though in their case H2 

was used as the reducing agent and CO2 and H2O were not simultaneously present in the feed.  In 

contrast, below 250 °C, Ren and Harold [340] reported significantly higher NH3 selectivities 

than in our case most likely due to the use of H2 and its higher reduction potential over CO for 

temperatures below 250 °C [26,356].  Furthermore, the narrow NH3
 
selectivity maximum at 250 

°C, for a variety of cycle timing and reductant concentration conditions, clearly illustrates that 

the selectivity to NH3 is primarily controlled by the reaction temperature over the LNT catalyst 

used.  At temperatures below 250 °C, the slow formation of surface isocyanates and the low rate 

of the WGS reaction, which represent the two most likely pathways to NH3 formation 

[24,60,64,286,339], can account for the low NH3 yields.  
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Figure 47.  Cycle averaged NH3 yield and NOX slip from the LNT catalyst as functions of 

temperature and lean/rich cycle timing. 
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Figure 48.  Cycle averaged NH3 selectivity obtained for the LNT catalyst as a function of 

temperature and lean/rich cycle timing.  
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catalyst will significantly reduce the amount of N2O slipped from the LNT catalyst at 

temperatures above 250 °C, but N2O slip will still be a problem at temperatures below 250 °C.  

  

 

 

Figure 49.  Cycle averaged N2O yield (A) and selectivity (B) obtained for the LNT catalyst as 

functions of temperature and lean/rich cycle timing. 
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In comparison to NH3 selectivity, the selectivity to N2O did not exhibit a maximum but 

instead it decreased monotonically as the temperature was increased (Fig. 49B).  Once again, 

changes in the lean/rich cycle timing had a relatively small impact on the N2O selectivity, in 

agreement with the results discussed above for the NH3 selectivity, further supporting the 

conclusion that the predominant factor controlling NH3 and N2O selectivity over the LNT 

catalyst is the operating temperature.   

Finally, the NH3 and N2O yields can be affected by the NOX storage–reduction regime 

under which cycling is conducted.  For example, the results shown in Fig. 50 depict two limiting 

cases for the NH3 and N2O yields.  The cycle averaged NOX conversions observed under these 

conditions are shown in Fig. 44.  As previously discussed, the NOX release and reduction 

kinetics were slower at 250 °C; therefore, longer, lower reductant concentration rich doses 

resulted in increased overall NOX conversions.  The amount of NOX stored by the LNT catalyst 

at 250 °C also increased with the length of the rich cycle, with the 60 s lean/5 s rich and 60 s 

lean/15 s rich combinations resulting in 185 and 202 µmol of stored NOX, respectively.  As seen 

in Fig. 50, extending the length of the rich cycle also resulted in higher NH3 and N2O yields even 

though the reductant concentrations were lower in this case.  Initially this result appears to 

contradict previous observations by Pihl et al. [351], where higher reductant concentrations 

resulted in increased NH3 and N2O yields.  However, one has to consider that at lower 

temperatures the product distribution is significantly affected by the NOX release and reduction 

kinetics in addition to the reductant concentration.  At 250 °C for example, the increased NH3 

and N2O yields can be attributed to a combination of increased NOX conversion, which is 

affected by the length of the rich cycle, and constant selectivities to NH3 and N2O, which are 

almost independent of the length of the rich cycling duration (Figs. 48 and 49B).  As a result, if 
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the NOX conversion and the amount of NOX stored increase without a significant change in the 

product selectivities, the yield to those products increases as well.  Alternatively at 500 °C, the 

higher reductant concentrations used during shorter rich cycles results in both higher NOX 

conversions and higher NH3 and N2O yields, consistent with the results reported by Pihl et al.  

[351].  In this case, the NOX stored on the LNT catalyst is released very quickly and high 

concentrations of reductant are needed to reduce all of the NOX released.  The amount of NOX 

stored is also not affected by the length of the rich cycle, since the catalyst regeneration is very 

fast. 

  

  

Figure 50.  Cycle averaged NH3 and N2O yields obtained for the LNT catalyst for different 

lean/rich cycle timing protocols at 250 and 500 °C. 
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At this point, it is important to differentiate between regeneration limited conditions (e.g., 

≤ 250 – 300 °C) and storage limited conditions (e.g., ≥450 °C), as previously discussed by Breen 

and Burch [16,353], because the kinetics of storage and regeneration have major implications on 

the observed catalytic performance for the production of NH3, as indicated by our results.  At 

low temperatures when NOX release and regeneration are kinetically limiting, a longer, lower 

concentration rich cycle results in higher NOX conversion than a shorter, higher concentration 

rich cycle because extending the length of rich cycle is critical for achieving complete 

regeneration.  In this case, despite the lower selectivity to NH3, more NH3 is actually produced 

because of higher NOX conversions.  At higher temperatures, this is no longer the case and 

higher concentration, albeit short rich cycles, results in both higher NH3 yield and selectivity, as 

previously reported by others [351,356]. 

3.4.5 REACTOR EFFLUENT PROFILES 

Concentration profiles for NO, NO2, NH3, CO, N2O and C3H6 observed downstream of 

the LNT catalyst during a 5 s rich cycle following a 60 s lean cycle are shown for different 

temperatures in Fig. 51.  As it becomes apparent from the results, these profiles vary 

significantly with temperature.  For both NO and NO2, for example, at temperatures above 450 

°C maxima in the effluent concentrations are observed within the first 1-2 s following the switch 

to rich conditions. As previously reported [140,151], the reason for this behavior is that NOX is 

released much faster than it is reduced.  At 550 °C, the maximum in the total NOX concentration 

approached 4500 ppm, which is actually 9 times higher than the total NOX concentration present 

in the feed.  The NO and NO2 profiles just prior to the switch to rich conditions at 60 s also 

demonstrate the poor storage capacity of the LNT at this temperature, since the NOX 

concentration has already reached the feed concentration.  At all other temperatures, with the 



www.manaraa.com

 

139 

 

exception of 200 °C, where storage is significantly limited, very low breakthrough of NOX is 

observed prior to the onset of the rich period.  Significant concentrations of NOX are also 

observed during the rich cycle downstream of the LNT catalyst in the lower temperature range 

(i.e., 200 – 300 °C).  In this case however, the maxima are lower and are more evenly distributed 

during the entire rich cycle and even extend in to the first 1 – 2 s of the subsequent lean cycle.  

This behavior can be attributed to the lower reduction activity of the LNT catalyst at these 

temperatures. 

The appearance of NH3 downstream of the LNT catalyst did not coincide with the onset 

of the rich cycle.  Instead, a delay was observed at all temperatures examined; in fact, for 

temperatures above 350 °C, no NH3 was observed until approximately 4 sec into the 5 s rich 

cycle.  This delay in NH3 breakthrough has previously been attributed to NH3 decomposition and 

oxidation and/or reaction with stored nitrites/nitrates as the NH3 propagates through the catalyst 

bed [23,286,351,352,356].  Since higher temperatures favor these NH3 reactions, especially for 

catalysts containing significant amount of OSC as in this case, the delay increases with reaction 

temperature.  The CO concentration profiles closely matched the behavior observed for NH3, 

with the exception of the lower temperature studied (200 °C), where apparently no significant 

CO-NOX reaction takes place.  The overall amount of CO in the LNT effluent stream reaches a 

minimum between 350 and 400 °C and then begins to increase as the temperature is further 

raised.  The 350 – 400 °C temperature range represents the optimum operating temperature for 

this catalyst, where the amount of reductants fed most closely matches the amount of NOX 

stored.   At higher temperatures (>450 °C), the NOX storage capacity of the LNT catalyst is 

reduced and as a result the reduction process becomes unbalanced during the rich cycle. 
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The C3H6 concentration profiles closely match those of CO at temperatures below 350 

°C, which is consistent with results previously reported by Abdulhamid et al. [26] for H2, CO 

and C3H6 at these temperatures.  Above 350 °C, no C3H6 was observed in the effluent from the 

LNT catalyst.  In contrast, CH4 formation was observed starting at 350 °C, although the amount 

of CH4 produced was relatively low.  For example, the maximum CH4 concentration did not 

exceed 150 ppm for any condition, yielding a cycled averaged concentration below 6 ppm.  

Hydrocarbon yields and selectivities can be rationalized via a complex network of parallel 

reactions incorporating oxidation, reforming and hydrogenolysis steps.  The final concentration 

observed depends on the relative rates of these reactions, which change significantly with 

temperature and a detailed analysis of this network is beyond the scope of the current 

manuscript.     

Finally, the N2O profiles (Fig. 51) indicate the presence of N2O in the effluent 

immediately after the transition from lean to rich conditions.  At lower temperatures (i.e., ≤ 300 

°C) an additional period of increased N2O production was also observed during the transition 

from rich back to lean conditions.  Results previously reported by Breen et al. [16] also showed 

two periods of N2O production at 250 °C, but not 350 °C, in agreement with our results.  In 

general, N2O formation is believed to occur over LNT catalysts when low H2/NOX ratios are 

present on the catalyst surface, frequently associated with transition from lean to rich 

environments [16,26,140,335,348,349].  At lower temperatures, where the N2O generation is 

especially pronounced, NO dissociation occurs slowly and N2O formation is favored through 

coupling of an adsorbed N and NO adatom, especially in the absence of high H2 concentrations 

[16].  Conversely, NH3 formation is favored at high H/NOX ratios, which are more likely to be 

present as regeneration proceeds in later stages of the rich cycle [140].  The NH3 and N2O 
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profiles shown in Fig. 51 are consistent with these previous postulations, with the production of 

N2O and NH3 generally being mutually exclusive.  An alternative pathway for the production of 

N2O during the rich to lean transition could be the reaction of residual surface isocyanates 

(NCO) with NO or O2.  We have previously reported the presence of surface NCO species 

during cycling studies over a model LNT catalyst even in the presence of H2O at 250 °C [339] 

and have shown along with others [288] that these species can react with NO or O2, yielding 

N2O.  The surface concentration of isocyanates is significantly reduced at temperatures above 

300 °C, which coincides with the disappearance of N2O during the rich to lean transition in the 

profiles of Fig. 51, providing further support to the hypothesis that an isocyanate-based reaction 

mechanism may be responsible for this second period of N2O production. 
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Figure 51.  LNT reactor effluent profiles for NO, NO2, NH3, CO, N2O and C3H6 observed 

during a 5 s rich cycle following a 60 s lean cycle at different temperatures. 
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3.5 CONCLUSIONS 

The results of the activity measurements performed in this study over a commercial 

catalyst and realistic lean/rich cycling conditions indicate the presence of two distinctly different 

kinetic regimes.  At temperatures below 300 °C, NOX release and subsequent reduction were 

kinetically limiting.  Therefore, longer, lower concentration rich pulses result in increased cycle 

averaged NOX conversions.  For example, extending the rich cycle from 5 to 15 s at 250 °C, 

while holding the overall reductant amount constant, resulted in an increase in cycle averaged 

NOX conversion from approximately 59 to 87%, respectively.  At temperatures above 450 °C, the 

opposite is true.  Under these conditions, NOX release and reduction occurs rapidly and shorter, 

higher concentration rich pulses are needed to achieve high NOX conversions.  For example, rich 

cycles of 5 to 15 s at 500 °C – once again, with a constant overall reductant amount – resulted in 

cycle averaged NOX conversions of approximately 76 and 54%, respectively.  The selectivities to 

NH3 and N2O are primarily functions of temperature and are higher at lower temperatures.  The 

effect of cycle timing and reductant concentrations were of secondary importance on these 

selectivities.  NH3 and N2O yields however, are significantly affected by the cycling timing 

parameters, since these strongly affect NOX conversion as indicated above.  The effects of 

cycling parameters are much less pronounced around the optimum operating temperature (i.e., 

350 – 400 °C) of the LNT catalyst indicating that the maximum in NOX conversion observed 

under these conditions is fairly robust.  Finally, concerted control of NH3 generation by varying 

the lean/rich cycle timing was demonstrated.  The most significant effects, in terms of both NOX 

conversion and NH3 yield, were observed either by extending the rich cycle at lower 

temperatures (i.e., kinetically limiting regime) or by shortening the rich cycle at higher 

temperatures (i.e., storage limiting regime).  In both cases, NH3/NOX ratios close to 
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stoichiometry could be obtained at the effluent of the LNT, demonstrating the potential for 

extending the region of operation with the utilization of a coupled LNT-SCR system.  N2O yields 

however, also increased with NH3 yields, especially at low temperatures, indicating that an 

efficient LNT-SCR configuration will also need to covert N2O downstream of the LNT catalyst. 
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CHAPTER 4.  PASSIVE-AMMONIA SELECTIVE CATALYTIC REDUCTION (SCR): 

UNDERSTANDING NH3 FORMATION OVER CLOSE-COUPLED THREE WAY 

CATALYSTS (TWC) 

 

4.1 PREFACE 

In the passive-NH3, TWC-SCR system, NH3 is formed over a close-coupled three-way 

(TWC) during rich periods and then stored on a downstream selective catalytic reduction (SCR) 

catalyst for use in a subsequent lean period.  NH3 formation over TWCs during steady-state 

operation is well known, but NH3 formation during cycling is poorly understood.  In this 

investigation, NH3 formation under steady-state and lean/rich cycling conditions was 

investigated using four commercial catalysts including: 1.) a Pd-only, high precious metal 

loading (HPGM) catalyst, 2.) a Pd/Rh + CeO2, low (LPGM) catalyst, 3.) a combination of the 

HPGM and LPGM (Dual-Zone) catalysts and 4.) a lean NOX trap (LNT) operated as a TWC.  

NH3 formation during steady-state operation was shown to be dependent on the AFR (air-to-fuel 

ratio), temperature and catalytic formulation.  Generally, the NH3 yield decreased as follows: 

HPGM ≥ Dual-Zone >> LPGM ≈ LNT.  Catalysts containing Rh and/or CeO2 generally 

produced less NH3, but all of the formulations could produce significant amounts of NH3 if 

operated under sufficiently rich conditions.  The AFR was determined to be a sensitive parameter 

that could be used to tune NH3 generation.  At higher temperatures, progressively richer AFRs 

were necessary to achieve high NH3 yields.  During cycling, richer AFRs were required to 

generate NH3 in comparison to the steady-state results.  The HPGM catalyst demonstrated the 

most robust NH3 formation in comparison to the amount of NOX slipped for all of the 
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temperatures considered, with an optimum operating region from approximately 400 to 450 °C.  

At moderate temperatures (275 – 500 °C), inclusion of NOX storage capacity (i.e., results 

collected for the LNT) dramatically increased the amount of NH3 produced in relation to the 

amount of NOX slipped, even though the LNT catalyst generally exhibited the lowest NH3 yield 

for steady-state operation.  This implied that inclusion of an “optimum” amount of NOX storage 

capacity could significantly improve the performance of the TWC-SCR system.  CO slip was 

observed under all conditions favorable for NH3 generation, and with therefore need to be 

addressed.  N2O formation, on the other hand, was generally insignificant for temperatures above 

400 °C, which is a unique advantage of TWC-SCR system.  

4.2 INTRODUCTION 

Lean-burn engines are more fuel efficient and produce less CO2 than traditional, 

stoichiometric-burn ones [1,282,357,358].  Unfortunately, a fleet-wide implementation of lean-

burn engines has not occurred because the development of cost effective catalysts capable of 

meeting current emissions regulations under lean-burn exhaust conditions still represents a major 

technical challenge.  Since the late 1970s, three-way catalysts (TWC) have been employed for 

the simultaneous reduction of nitrogen oxides (NOX) and oxidation of unburned hydrocarbons 

and carbon monoxide (CO) present in engine exhaust.  However, TWCs only sufficiently 

remediate pollutants if operated in a very narrow region near the stoichiometric combustion 

regime and exhibit very low NOX conversion if operated under the high O2 conditions 

encountered in lean-burn engine exhausts [279].  Two existing solutions for the reduction of lean 

exhaust NOX include lean NOX trap (LNT) and NH3-selective catalytic reduction (NH3-SCR) 

catalysts.  Operation of these systems has been summarized in several recent reviews 

[2,4,6,279,359,360].   
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Briefly, LNTs are designed for operation in periodic lean (≈60 s) and rich (≈5 s) 

environments. During lean periods, NO is oxidized to NO2 over precious metal sites (e.g., Pt, Pd, 

Rh) and then subsequently stored on an alkali or alkali-earth storage component (e.g., Ba) in the 

form of nitrites or nitrates [22,339].  As storage elapses, the storage component becomes 

saturated with NOX and a brief rich period must be employed to regenerate the catalyst and 

convert stored NOX to N2.  Commercial formulations include relatively high weight loadings of 

Pt (≈2 – 3 wt%), with smaller amounts of Pd and/or Rh, supported on a Ba containing high 

surface area γ-Al2O3 [4,135].  Conversely, NH3-SCR catalysts do not rely on cycling strategies 

and instead operate through the selective reaction of NH3 with NOX in the presence of large 

amounts of excess oxygen, where NH3 is typically provided via on-board storage of urea – which 

is rapidly hydrolyzed to NH3 under automotive exhaust conditions [2].  Commercial SCR 

catalytic formulations typically include V2O5-WO3/TiO2 or Cu/Fe exchanged zeolites 

[2,279,359,360].  In Europe, V2O5-WO3/TiO2 based formulations were introduced in 2005 for 

heavy-duty diesel applications, but high activity for SO2 oxidation, toxicity of volatile vandia 

species (>650 °C) and poor activity and selectivity above 550 °C generally make the zeolite 

based formulations more attractive for lean-gasoline applications [360].  Zeolite-based catalysts 

also store significantly more NH3 than their V2O5 based counterparts [341,343].  Initially, 

commercialization of zeolite based SCR catalysts was limited because of substantial problems 

related to hydrothermal stability, but recent advances in zeolite technology have led to the 

discovery of hydrothermally stable, small pore, metal-exchanged zeolites that are active over a 

broad temperature range [342,344].  Stabilization of the zeolite structure using a metal oxide 

coating has also been demonstrated [361]. 
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Both LNT and SCR technologies suffer from different, but significant drawbacks.  For 

example, LNT catalysts require high platinum group metal (PGM) loadings, which results in a 

significant cost per catalyst, and they are also particularly susceptible to sulfur poising; therefore, 

periodic, high-temperature regenerations schemes are required that can partially degrade LNT 

performance [4,359].  NH3-SCR catalysts are comparatively inexpensive, but the dosing system 

required to deliver urea to the exhaust stream is expensive and does not seem practical for 

smaller gasoline engines.  The urea dosing system also requires on-board storage of urea to 

function (e.g., a 30-litre tank) and customer resistance to the additional “fuel” tank, the lack of 

existing infrastructure, a relatively high freezing point (approx. -12 °C) and long-term stability 

issues (>32 °C) are all topics of considerable concern.  With these considerations, NH3-SCR is 

emerging as the key technology for large vehicle applications, while LNT catalysts are favored 

for smaller engines [359].   

Recently however, researchers at GM have demonstrated a new technology referred to as 

the “passive-ammonia” or “urealess” SCR approach [282,357,358,362–364].  As in the case of 

LNT systems, the passive-NH3 approach is based on periodic lean-rich cycling mode of 

operation, but does not include an LNT catalyst.  Instead, a close-coupled TWC is used to 

generate NH3 during periods of rich operation.  The NH3 is then stored on a downstream, under-

floor SCR catalyst.  After a sufficient amount of NH3 has been stored, the engine switches back 

to lean operation and the stored NH3 is used to reduce NOX that slips un-reacted from the 

upstream TWC.  This is particularly attractive in gasoline applications because it allows the 

vehicle resort back to stoichiometric operation if necessary.  Ultimately, the successful operation 

of the passive approach relies on the following factors: 1.) robust and selective NH3 generation 

over the TWC, 2.) significant storage of NH3 on the downstream SCR catalyst, 3.) efficient 
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utilization of stored NH3 for NOX reduction and 4.) optimization of the required lean/rich engine 

timing, where a higher ratio of lean to rich time increases efficiency gains.   

Of these, the selective generation of NH3 over the TWC is arguably the most important 

aspect of the passive-NH3 approach.  While the potential for NH3 formation over TWCs is well 

known [120], early research efforts were focused on avoiding NH3 formation.  Even so, 

subsequent reactor screening experiments [365–367], engine chassis dynamometer studies [368–

372] and tunnel investigations [373–375] confirmed NH3 slip from vehicles equipped with 

TWCs, where NH3 generation was not necessarily expected under typical operating conditions.  

Heeb et al. [371,372] clearly demonstrated that NH3 was produced as a secondary pollutant over 

the TWC and was not generated by the engine.  They further argued that NH3 standards should 

be included in future regulations.  While NH3 slip from TWCs may be unfavorable in the 

traditional sense, in this case the main goal is to produce NH3 over the TWC for use in a 

downstream SCR catalyst.   

In this manuscript, we focus on NH3 generation over a series of TWCs including: a high 

PGM, low PGM, dual-zone TWC and a TWC with NOX storage capacity.  The catalysts were 

evaluated under both steady-state and lean-rich cycling conditions using commercial monolithic 

cores loaded into a bench-core reactor.  The effects of catalytic formulation, temperature and 

steady-state vs. cycling conditions on NH3 generation will be discussed. 

4.2 EXPERIMENTAL 

4.2.1 CATALYSTS 

Four fully formulated cores (wash-coated honeycomb cordierite monoliths) were used in 

the present investigation and have been summarized in Table 11.  Three of the cores were 
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obtained from a commercial 1.3 L TWC that is employed in a 6-speed, Chevy Malibu (Model 

Year: 2009).  The catalyst deign was constructed using a dual-zone approach, where the front 

and rear sections were intentionally synthesized using different formulations.  The first 62 mm 

(0.6 L) section of the monolith is a Pd-only, high platinum group metal (HPGM), Pd-only TWC 

(0/4/0 g of Pt/Pd/Rh, respectively) and the rear 73 mm (0.7 L) section is a low platinum group 

metal (LPGM), Pd/Rh TWC (0/0.8/0.21 g Pt/Pd/Rh, respectively – which also contained CeO2).  

In this case, the HPGM catalyst, the LPGM catalyst and the combination of the two were 

independently evaluated, where the HPGM catalyst was placed upstream of the LPGM catalyst 

in the Dual-Zone designation – as is the case on the vehicle.   

  

Table 11.  Elemental compositions of the four catalysts used in this investigation. 

Catalysts 

Cat. Volume 

(on vehicle) 
PGM loading Oxygen Storage 

Capacity (OSC) 

NOX Storage 

Capacity (NSC) 
(L) (g/L of Pt/Pd/Rh) 

1.) High PGM TWC 0.6 0/6.7/0 No No 

2.) Low PGM TWC 0.7 0/1.14/0.3 Yes (CeO2-based) No 

3.) Dual-Zone (1+2) 1.3 0/3.7/0.16 Yes (CeO2-based) No 

4.) LNT as TWC 2.6 2.2/0.8/0.3 Yes (CeO2-based) Yes (Ba-based) 

 

In addition to the TWCs, a lean NOX trap catalyst (LNT) was evaluated under identical 

conditions as the TWCs.  Obviously, the LNT also included a significant amount of NOX storage 

capacity (NSC) – leading to the designation: TWC with NSC.  The LNT catalyst is employed in 

a lean-GDI, BMW 120i (Model year: 2009).  More detailed information regarding the 

characterization of this catalyst can be found in a recent manuscript [376].  Briefly, semi-

quantitative metals screening conducted using ICP-MS (inductively coupled plasma mass 

spectroscopy) conducted at Galbraith Laboratories confirmed Mg, Al, Ce and Ba as major 
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components, with other elements of interest including: Zr, La, Pt, Pd, and Rh.  Subsequent 

electron microscopy with complementary elemental analysis exposed three compositionally 

distinct grains including: a Ce/Zr mixed oxide domain, a Mg/Al mixed oxide domain and an Al 

oxide domain.  In this case, Pt, Pd and Ba all seemed to be preferentially deposited on the Ce/Zr 

domain.      

4.2.2 EVALUATION 

Catalytic evaluation was performed using a laboratory bench-flow reactor, as described in 

more detail elsewhere [135,376].  Briefly, the monolithic cores were tightly wrapped in Zetex 

insulation tape and inserted into a horizontal quartz tube reactor.  The quartz tube was heated 

using a horizontal bench-top furnace (Lindberg/Blue M).  Gas mixtures were prepared using 

pressurized gas cylinders (UHP, Air Liquide) and a bank of mass flow controllers (Unit 

Instruments Series 7300, Kinetics Electronics).  A rapid switching 4-way valve system was used 

to alternate between the lean and rich gas mixtures, when necessary.  Water was introduced 

using a peristaltic pump (Cole-Parmer) that fed into a heated, flash-vaporization zone held at 350 

°C.  All gas lines downstream of the water introduction zone were heated and quartz chips were 

placed upstream of the monolithic core to ensure that the feed gas temperature reached the set 

point temperature prior to contacting the catalyst.  Three thermocouples were used to measure 

the temperature.  The first was placed 1 cm upstream of the core and was used to record the 

inlet/set-point temperature.  The second thermocouple was placed in the middle of the monolithic 

core and was used to record the actual monolith temperature.  The third was placed 1 cm 

downstream of the core and was used to record the temperature exiting the core.  After exiting 

the reactor, the gas was fed to an MKS MultiGas
TM

 2030 HS FT-IR analyzer, which allowed for 

continuous tracking (5 Hz) of NO, NO2, N2O, NH3, CO, C3H6, CO2 and H2O.  Prior to the 
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reactor measurements, the as-received catalyst was “de-greened” at 700 °C in a humidified air 

(2.7% H2O) mixture for 16 h to establish reproducible performance. 

STEADY-STATE EXPERIMENTS 

Steady-state experiments were conducted in order to measure NH3 formation over TWCs 

as a function of catalytic formulations and temperature and compare the results to those obtained 

during cycling.  A realistic gas mixture containing: 0.15% NO, 1.8% CO, 0.60% H2, 0.10% 

C3H6, 5% CO2, 5% H2O and variable amount of oxygen was used, where the oxygen content was 

systematically changed in order to vary the air to fuel ratio (AFR). The inlet gas temperature was 

varied from 150 to 550 °C, in 50 °C increments, at a space velocity (S.V.) of 75,000 hr
-1

, where 

the monolithic core volume (≈0.8” x 0.45”, W x L) was used to calculate the required flow rate 

necessary to achieve the desired S.V.  The reductant ratio was set to 18:6:1 for CO:H2:C3H6, 

respectively, which is representative of rich-tune engine exhaust.  In this case, an AFR of 14.59 

was calculated to represent stoichiometric operation for the previously described gas mixture 

containing 1.59% O2.  Table 12 summarizes the conditions for steady-state operation, where the 

corresponding AFR varies with the O2 content as previously described.  The NOX conversion, 

CO conversion and C3H6 conversion were calculated using equations 19 – 21.   

���� = ������������ !"##��
������� × 100 

(19) 

�'� = �(�)*+ − �(�,-.//*+
�(�)*+ × 100 

(20) 

�'012 = �(�34��� − �(�34 !"##��
�(�34��� × 100 

(21) 
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In the case of steady state operation, the integral can be simplified as shown in Eqn. 22, where 

the average NOX concentration at steady state is divided by the feed concentration.  

���� = ?1 − ���,,,���,)*+A × 100 (22) 

 

Similarly, Eqns. 23-26 were used to calculate the NH3 and N2O yield and selectivity, 

respectively.   

5�10 = ��3�678+9:*+����)*+ × 100 
(23) 

;�10 = ��3�678+9:*+����)*+ × ���� × 100 
(24) 

5�<� = ����678+9:*+����)*+ × 100 
(25) 

;�<� = 2 × ����678+9:*+����)*+ × ���� × 100 
(26) 

In the case of selectivity, NOX was excluded as a product and the total number of moles 

of N2, NH3 and N2O formed was determined by multiplying the total NOX fed by the cycle 

averaged NOX conversion, which was calculated using Eqn. 19.  The calculations were 

performed in this manner because N2, and other diatomic molecules (e.g., O2 and H2), cannot be 

measured using the FT-IR gas analyzer. 
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Table 12.  Reaction conditions for the steady-state catalytic evaluation of TWCs, with calculated 

AFRs and λ values. 

AFR λ O2 NO CO H2 C3H6 CO2 H2O 

(BCD = EF��G"H
EF��IJ�!) (K = L)MGNO

L)MPOQ"NR) (%) (%) (%) (%) (%) (%) (%) 

14.59 1.000 1.590 0.15 1.8 0.60 0.10 5 5 

14.54 0.996 1.525 0.15 1.8 0.60 0.10 5 5 

14.52 0.995 1.510 0.15 1.8 0.60 0.10 5 5 

14.40 0.987 1.340 0.15 1.8 0.60 0.10 5 5 

14.20 0.973 1.060 0.15 1.8 0.60 0.10 5 5 

14.00 0.960 0.790 0.15 1.8 0.60 0.10 5 5 

 

CYCLING EXPERIMENTS   

The TWCs were also analyzed under lean/rich cycling conditions, where cycle timing 

was fixed according to the NOX concentration.  The rich and lean-NOX concentrations exiting a 

lean-burn engine under these conditions were estimated to be 1500 ppm and 750 ppm, 

respectively using a recent publication by Parks et al. [377].  As a point of reference, this 

rich:lean NOX ratio of 2:1 is fairly conservative if compared to recent data published by Kašpar 

et al. [279].  The cycle timing was then fixed so that equivalent amounts of NOX were delivered 

in the lean and rich periods.  The rich period duration was set to 20 s, which corresponded to a 40 

s lean period for equivalent NOX delivery at a S.V. of 75,000 hr
-1

, as in the case of the steady-

state experiments.  Similarly, the inlet gas temperature was varied from 150 – 550 °C, in 50 °C 

increments.  Two rich phase concentrations were selected for investigation.  The first 

corresponded to an AFR ratio of 14.4, which is slightly rich.  The second corresponded to an 

AFR of 14.2, which was richer than the first case, but not so rich that a significant fuel penalty 

would result [357].  The gas concentrations for the lean and rich cycling experiments are shown 

in Table 13.  The cycle averaged NOX, CO, C3H6 conversions and NH3 and N2O yield and 

selectivity, respectively, were calculated using Eqns. 19 – 21 and 23 – 26 using the last 4 cycles 

after the periodic steady state had been achieved, as demonstrated previously [376]. 
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Table 13.  Reaction conditions for lean/rich cycling evaluation of TWCs, with calculated AFRs 

and λ values. 

 
AFR λ 

Duration O2 NO CO H2 C3H6 CO2 H2O 

 (s) (%) (%) (%) (%) (%) (%) (%) 

Lean 

 24.00 1.65 40 8.0 0.075 - - - 5 5 

Rich 1 

 14.40 0.987 20 1.34 0.15 1.8 0.60 0.10 5 5 

Rich 2 

 14.20 0.973 20 1.06 0.15 1.8 0.60 0.10 5 5 

4.4 RESULTS AND DISCUSSION 

4.4.1 STEADY-STATE NH3 FORMATION 

EFFLUENT GAS PROFILES AT 250 °C 

The results shown in Fig. 52 demonstrate the effluent gas concentrations for NOX, NH3, 

N2O, CO and C3H6 during steady-state operation over the HPGM, Pd-only TWC (Fig. 52A) and 

LPGM, Pd/Rh TWC (Fig. 52B) as a function of the AFR.  The inlet gas temperature, measured 1 

cm in front of the TWC, was set to 250 °C.  During operation, the lowest mid-core temperature 

under these conditions was approximately 430 °C, 180 °C higher than the inlet temperature, 

which demonstrates that co-feeding reductants in the presence of O2 (where the O2 conc. was 

adjusted in order to vary the AFR) resulted in a significant exotherm over TWCs.  For 

stoichiometric operation (i.e., AFR = 14.59), the exotherm approached 250 °C.   

Fig. 52 also shows that the product distribution obtained over TWCs was strongly 

dependent on the AFR.  For stoichiometric operation, both the CO and NOX conversion 

exceeded 99.8% and the exiting concentrations of NOX, CO and C3H6 were effectively zero.  

However, a slight change in the AFR resulted in dramatic changes in the concentrations of NOX 

and CO observed in the reactor effluent.  C3H6, on the other hand, was not observed in the AFR 
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range considered in this investigation, nor were any other hydrocarbons; however, it is expected 

that a significant amount of the C3H6 being fed is being converted to CO over these catalysts, 

especially under rich conditions.  Tagliaferri et al. [378] previously reported similar results for 

C3H8 conversion under similar conditions.  Even though the AFR was expected to dramatically 

affect the product distribution, the acute sensitivity of the TWCs to the operating conditions, 

especially for lean operation, was quite impressive.  For example, when the AFR was tuned very 

slightly lean (e.g., AFR=14.63 or λ=1.003) over the HPGM catalyst, the NOX conversion 

plummeted to 44%.  Similar behavior was observed over the LPGM catalyst, but the NOX 

conversion only dropped to 73% in that case.  As Taylor [379] previously explained, Rh 

demonstrates high activity for the selective reduction of NOX to N2, even under slightly lean 

environments.  Therefore, the higher NOX conversion over the LPGM case under lean conditions 

can most likely be attributed to the presence of Rh on the catalyst.  The LPGM catalyst also 

produced less N2O than the HPGM catalyst under slightly lean conditions, where significantly 

higher levels of N2O formation over Pd/Al2O3 in comparison to Rh/Al2O3 have previously been 

reported [380].  The presence of CeO2 on the LPGM catalyst may have also suppressed N2O 

formation, as previously reported by Oh [381].  

During rich operation (i.e., AFR<14.59), both of the TWCs produced NH3 and slipped 

CO.  Over the HPGM catalyst, the concentration of CO slipped as the AFR was tuned from 

14.59 to 14.4 increased linearly, but subsequently richer operation resulted in an exponential 

increase in the concentration of CO slipped.  NH3 formation over the HPGM catalyst similarly 

increased as the AFR was decreased from 14.59 to 14.4.  Progressively richer operation did 

result in minimal increases in the NH3 yield, but >95.0% of the incoming NOX had already 

reacted to form NH3 by an AFR of approximately 14.35.  The results obtained over the LPGM 
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catalyst were generally similar, but the NH3 yield was noticeably lower.  For example at an AFR 

of 14.4, the NH3 yield was only 54.0% over the LPGM catalyst in comparison to 90.0% over the 

HPGM catalyst under the same conditions.  Even when operated under significantly richer 

environments, the LPGM catalyst never reached the high NH3 yields observed over the HPGM 

catalyst.  Conversely, the amount of CO slipped under rich conditions over the LPGM catalyst 

was lower in comparison to the HPGM case if compared at an AFR of 14.2. 

It should be noted, that under these conditions of low NH3 yield that neither N2O or NOX 

were observed, which once again suggests that the N2 yield was increasing for the Rh and CeO2 

containing LGPM.  Schlatter et al. [120] previously explained that the main role of Rh in TWCs 

was to selectively reduce NOX to N2 instead of NH3.  They demonstrated that Rh-only TWCs 

generated significantly less NH3 than Pd/Rh or Pt/Rh TWCs under rich conditions.  Furthermore, 

when the Pt and Rh TWCs were physically separated and the Rh catalyst was placed upstream of 

the Pt catalyst, significantly less NH3 was generated than when Pt catalyst was placed upstream 

of the Rh catalyst.  These results clearly demonstrate that Rh-only and Rh promoted TWCs more 

selectively reduce NOX to N2 under rich conditions.  This is in agreement with an earlier 

publication by Kobylinski et al. [382], where Pt and Pd catalysts mainly produced NH3 under 

rich conditions, while Rh and Ru catalysts were significantly more selective towards N2 

formation.   
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Figure 52.  Effluent gas concentrations for ( ) NOX, ( ) NH3 (X) N2O, ( ) CO and ( )C3H6 

over (A) HPGM, Pd-only TWC and (B) LPGM, Pd/Rh TWC, respectively.  (S.V. 75,000 hr
-1

, 

Inlet Temp. = 250 °C, Reaction conditions shown in Table. 12). 
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Figure 53.  Effluent gas concentrations for ( ) NOX, ( ) NH3 (X) N2O, ( ) CO and ( )C3H6 

over (A) Dual-Zone TWC and (B) LNT as TWC, respectively.  (Same conditions as Fig. 52). 
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The presence of CeO2 on the LPGM catalyst may also be significant as CeO2 has 

previously been reported to: preserve noble metal dispersion, increase the thermal stability of the 

support, promote water gas shift (WGS) activity and steam reforming, store and release oxygen, 

and promote CO oxidation [383].  CeO2 has also been reported to enhance NO decomposition, 

via spillover of oxygen onto the partially reduced CeO2, and favorably alter the kinetics for CO 

oxidation and NOX reduction [379].  In this case, the CeO2 on the LPGM catalyst appeared to 

affect the WGS activity, where the CO concentration at an AFR of 14.2 was approximately 4000 

ppm instead of 5000 ppm for the LPGM and HPGM catalysts, respectively.  Unfortunately, as 

discussed by Kaspar et al. [383], the role of CeO2 in the NO/H2 or NO/H2/CO reaction on TWCs 

is still unclear and very few investigations have addressed the issue [384,385].  Therefore, 

further comments regarding the role of CeO2 on NH3 formation under rich conditions over the 

LPGM catalyst cannot be made.  Given the extensive nature of research performed on TWCs, the 

reader is referred to the following reviews for a more exhaustive discussion on the effects of 

CeO2 and Rh on TWC performance and/or specifics of TWC operation [2,279,379,383,385–

387]. 

In summary, Fig. 52 clearly demonstrates that the AFR is a sensitive parameter that can 

be used to tune NH3 generation over TWCs.  This is important because in the passive NH3, 

TWC-SCR approach, selective NH3 generation over the close-coupled TWC will ultimately 

dictate operation conditions (i.e., cycle timing) for the downstream SCR catalyst.  Additionally, 

the desired NH3 yield can be balanced using a threshold limit for CO slip deemed to be tolerable.  

For example, steady-state operation of the HPGM catalyst at an AFR ratio of 14.2 would result 

in a slightly higher NH3 yield, but the concentration of CO slipped from the TWC under these 

conditions would also be an order of magnitude higher than for operation at an AFR of 14.4.  
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Lastly, while CO slip can be minimized, it cannot be eliminated merely by tuning the AFR, as 

CO was observed under all conditions favorable for NH3 generation over the TWCs. 

Fig. 53 depicts the results collected over the Dual-Zone TWC (Fig. 53A) and over the 

LNT as TWC (Fig. 53B), respectively.  As discussed in Section 4.2.1, the Dual-Zone TWC was a 

combination of the HPGM and LPGM catalysts placed in series, where the HPGM catalyst was 

always placed upstream of the LPGM catalyst.  Interestingly, the NH3 profile observed over the 

Dual-Zone catalyst was effectively identical, within experimental error, to the NH3 profile 

observed over the HPGM catalyst (Fig. 52A).  This is a strong indication that both NOX 

reduction and NH3 formation occurred in the front section of the Dual-Zone catalyst over the 

HPGM section.  While NH3 formation over the downstream LPGM catalyst cannot be excluded, 

it is unlikely because, as previously discussed, this catalyst was significantly less selective for 

NH3 formation.  Furthermore, if the majority of NH3 was indeed produced over the HPGM 

section, this indirectly suggests that NH3 decomposition over the Rh and CeO2 containing LPGM 

section did not occur, at least at these temperatures.  While Kobylinski et al. [382] previously 

reported NH3 decomposition over Rh and Ru containing TWCs, significant activity was not 

observed until 500 °C if CO was present in the gas mixture.  In this case, the AFRs most 

favorable for NH3 generation yielded corresponding catalyst temperatures below 470 °C and CO 

was always observed during NH3 generation, as previously discussed.  Conversely, the amount 

of CO slipped over the Dual-Zone catalyst under rich conditions was reduced and more closely 

resembled the results obtained over the LPGM catalyst (Fig. 52B), where higher WGS activity 

was previously suggested to account for the lower CO concentrations.  These results are 

consistent with an earlier report by Schlatter et al. [120], where the NH3 concentration profile as 

a function of the oxygen concentration obtained over a Rh catalyst placed upstream of a Pt 
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catalyst was nearly identical to the monometallic Rh catalyst.  Similarly, the NH3 profile 

obtained over a Pt catalyst placed upstream of a Rh catalyst was nearly identical to the 

monometallic platinum catalyst.  Taken together, this indicates that the Dual-Zone catalyst may 

be able to combine the high NH3 yield of the HPGM catalyst and lower CO slip of the LPGM 

catalyst, which are both desirable attributes of a TWC in the passive-NH3, TWC-SCR approach.   

The results obtained over the LNT as TWC are shown in Fig. 53B, where the NH3, NOX 

and CO profiles generally mirror results obtained over the LPGM catalyst.  Again, similarities in 

the LNT and LPGM catalyst formulations most likely explain why analogous behavior was 

observed.  Unfortunately, C3H6 breakthrough was observed for AFRs below 14.3.  This behavior 

was not expected, but could be explained because LNT catalysts are typically operated at 

significantly lower SVs than TWCs and the dip-coating procedure may have been altered 

accordingly.  Additionally, the LNT catalyst contained Pt as a primary component instead of Pd, 

where Pd has long been reported to exhibit better activation of HCs than Pt [27,112,279].  

QUANTIFIED NH3 YIELD (150 – 550 °C) 

 The results shown in Fig. 54 compare the quantified NH3 yield as a function of the mid-

core temperature at a constant AFR over the entire family of TWCs considered in this 

investigation.  In all cases, the inlet temperature, prior to contacting the catalyst, was varied 

between 150 °C to 550 °C.  As Fig. 54 demonstrates however, the mid-core temperature was 

always considerably higher than the set point temperature, as previously observed in Figs. 52 and 

53.  This shifted the temperature range of consideration from 150 to 550 °C to approximately 

350 to 700 °C.  While this may appear to be on the high side, close-coupled TWCs can 

experience temperatures as high as 900 – 1100 °C and operation from 350 – 700 °C was 

therefore viewed to be a representative temperature range [15].  Recent engine dynamometer 
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results collected using a federal test procedure (FTP) drive cycle (data omitted  for brevity) 

confirmed that the average operating temperature for a close coupled TWC ranged from 400 – 

500 °C, with excursions up to 700 °C. 

Fig. 54A displays the richest condition considered (AFR = 14.0) and demonstrates that all of the 

TWCs considered in this investigation generated significant amounts of NH3 over a broad 

temperature window if they are operated under sufficiently rich conditions.  In this case, the 

HPGM, Pd-only TWC clearly generated the most NH3, over the widest temperature range, but 

the Dual-Zone catalyst also generated significant amounts of NH3 and was generally 

indistinguishable from the HPGM catalyst until the temperature exceeded 500 °C.  Interestingly, 

the difference in the NH3 yield between the HPGM and Dual-Zone catalyst occurred at 

approximately the same temperature as Kobylinski et al. [382] previously reported significant 

activity for NH3 decomposition over Rh containing TWCs.  Since the rear section of the Dual-

Zone formulation was based on a Pd/Rh/CeO2 combination, NH3 decomposition over the 

downstream LPGM section could explain why lower NH3 yields were observed at higher 

temperatures.  Decreased NH3 yield over the LPGM catalyst in comparison to the HPGM 

catalyst was also clearly evident, where the HPGM catalyst always produced more NH3 than the 

LPGM catalyst even for the lowest temperatures considered.  Similarly, decreased NH3 yield 

over the LPGM catalysts was most likely caused by the presence of Rh and/or CeO2 [120].  Fig. 

54A also clearly demonstrates the similarities in operation between: (1) the HPGM and Dual-

Zone catalyst and (2) the LPGM and LNT, as previously discussed (Figs. 52 and 53). 
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Figure 54.  Quantified NH3 yield as a function of catalyst temperature for AFRs of (A) 14.0, (B) 

14.2 and (C) 14.4. 
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When the AFR ratio was increased from 14.0 to 14.2 (Fig. 54B), the differences in 

performance between the catalytic formulations became much more pronounced and only the 

HPGM catalyst maintained a high NH3 yield over the entire temperature range.  In all other 

cases, a significant decline in the NH3 yield was observed.  This is especially apparent for the 

LPGM and LNT catalysts for temperatures above 550 °C and reasonable NH3 yields were only 

observed over a fairly narrow temperature range from 400 to 525 °C.  Similarly, when the AFR 

was increased from 14.2 to 14.4 (Fig. 54C), even more significant impacts on the NH3 yield were 

observed.  Now, even the HPGM catalyst was unable to maintain a high NH3 yield over the 

entire temperature range.  In summary, Figs. 52-54 have shown that the AFR ratio, catalyst 

temperature and catalytic formulation are all sensitive parameters that dictate the amount of NH3 

that can be generated over TWCs.  Generally, the NH3 yield decreased as follows: HPGM ≥ 

Dual-Zone >> LPGM ≈ LNT, where tuning the AFR progressively closer to stoichiometric 

operation resulted in less NH3 production in all cases.  The differences between the catalytic 

formulations also became more pronounced as the operating conditions approached 

stoichiometric operation.  This conclusion is more clearly seen in Fig. 55, where operation of the 

HPGM, Pd-only catalyst (i.e., the catalyst with the highest NH3 yield used in this investigation) 

required subsequently richer and richer AFRs to achieve maximum NH3 yield as the inlet gas 

temperature was increased.    
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Figure 55.  Quantified NH3 yield over the HPGM, Pd-only TWC as a function of the AFR and 

temperature. 
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formation of N2, N2O and NH3. They also noticed little NH3 formation for a H2/NO ratio of 0.5, 

but significant NH3 formation when the H2/NO ratio was increased to 5, which indicated that a 

high H2/NO ratio on the metal surface in addition to NO dissociation was required for NH3 

formation.  Similar results have also been reported over Pd [389] and Rh [390]; but in the case of 
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Rh, NH3 decomposition was observed by 325 °C.  This is in excellent agreement with the CO-

free results reported by Kobylinski et al. [382] over supported Rh catalysts.  Gahndi et al. [392] 

similarly observed minimal NH3 decomposition over Pt and Pd catalysts at approximately 500 

°C, but significant (>80%) NH3 decomposition over a Ru catalyst by 370 °C.   

These features of the NH3 formation mechanism are clearly evident in Figs. 52-55, where 

high reductant to NOX ratios favored NH3 formation at intermediate temperatures.  Under those 

conditions, NO dissociation occurs rapidly and NH3 decomposition is slow.  At elevated 

temperatures, higher NH3 yields were observed for formulations where catalytic NH3 

decomposition was less likely.  For temperatures below 400 °C, N2O was also observed, but the 

yield was generally insignificant.  This behavior was initially counterintuitive since rich 

operation implies a high H2/NO ratio and N2O formation should therefore be unlikely.  However, 

as the temperature was decreased, NO dissociation most likely becomes rate-limiting – where the 

temperature for NO dissociation has been reported between 125 – 225 °C [388–390] – and the 

likelihood that a N adatom will react with a molecularly adsorbed NO instead of another N 

adatom increases. 

4.4.2 NH3 FORMATION DURING LEAN/RICH CYCLING 

LEAN/RICH CYCLING PROFILES AND NH3 YIELDS 

The preceding sections demonstrated the potential for NH3 formation over all four of the 

catalysts investigated, where changes in the catalyst formulation, temperature and AFR all 

affected the amount of NH3 that could be formed.  However, these results were obtained during 

steady-state operation under a constant rich environment.  In the passive-NH3, TWC-SCR 

approach, the TWC must also be able to generate significant amounts of NH3 during lean/rich 

cycling.  The results shown in Fig. 56 demonstrate lean/rich cycling over the HPGM, Pd-only 
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TWC for a rich period AFR ratio of 14.2.  The top left pane shows the NO, NO2 and NOX 

concentration profiles collected over 4 representative lean/rich cycles at 250 °C, where the first 

40 s represents lean operation, followed by 20 s of rich operation.  As previously discussed, this 

cycle timing was chosen in order to keep the total number of moles of NOX delivered during lean 

and rich periods the same.  As shown, NOX breakthrough during lean operation (e.g., 0 - 40 s) 

occurred rapidly over the HPGM TWC.  The sigmoidal shape of the NOX breakthrough curve 

indicated that some NOX storage was taking place, even though the HPGM TWC does not 

contain Ba as a NOX storage component.  Furthermore, the effluent NOX concentration at the end 

of the lean period was only 680 ppm instead of 750 ppm, which provided additional evidence of 

NOX storage.  At lower temperatures, NOX storage on the TWC might be expected, since 

significant NOX storage on Al2O3 has previously been reported for temperatures below 300 °C 

[33].  At 40 s, the conditions were switched back to rich operation.  As in the case of LNT 

catalysts, a NOX spike was observed at the lean to rich interface.  Over LNT catalysts, the 

decomposition of stored nitrites/nitrates has been reported to occur more rapidly than NOX 

reduction at these lean/rich interfaces [140,151].  Additionally, slower NOX reduction over 

partially oxidized metal sites has also been reported to contribute to NOX slip [6].  In this case, it 

would appear that similar NOX release mechanisms were occurring over the TWC and co-

feeding NOX during the rich period may have made NOX release even more likely.   

During rich periods, the effluent NOX concentration was always zero, excluding the brief 

period of NOX slip, which indicated that NOX reduction during rich periods even under lean/rich 

cycling was facile.  The corollary N2O, CO and NH3 concentration profiles for lean/rich cycling  
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Figure 56.  Lean/rich cycling over the HPGM, Pd-only TWC at 250 and 500 °C, respectively. 

(Reaction conditions shown in Table 13: Lean/Rich2 – AFR=14.2). 

 

at 250 °C are shown in the bottom portion of the left-hand pane in Fig. 56.  In this case, an N2O 

spike was observed at the lean/rich transition, which rapidly decreased as the rich period 

continued.  Again, N2O formation over LNT catalysts has been shown to be a strong function of 

temperature and the ratio of adsorbed N and NO adatoms to reductants 

[140,151,346,349,351,356].  At the beginning of the rich period, the stored NOX was rapidly 

released and N2O was formed until a net reducing environment was attained, where comparison 

between the concurrently decreasing N2O and increasing CO concentrations supports this 

assessment.  Significant amounts of NH3 were also produced during the rich periods.  In this 
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case, the peak concentration exceeded 2000 ppm.  Since only 1500 ppm of NOX was fed during 

rich periods, peak values exceeding 1500 ppm implied that the NOX stored on the TWC could be 

converted to NH3.  As the rich period progressed, the NH3 concentration declined because all of 

the stored NOX had been consumed.  If the rich period duration had been extended, the NH3 and 

CO concentration values would have eventually reached the steady-state concentrations. 

At 500 °C, NOX breakthrough occurred even more rapidly and a nearly-rectangular step-

function for the NOX profile was observed, which implied that very little NOX was stored at this 

temperature.  However, and surprisingly, minimal NOX storage was still observed.  The 

transition from lean to rich conditions at 500 °C also resulted in a significantly higher NOX slip 

concentration, where any NOX stored over Al2O3 under these conditions would most likely be 

released extremely rapidly.  Similarly, N2O formation was observed at the lean/rich interface, but 

the concentration was significantly reduced, where higher temperatures generally favor less N2O 

formation during cycling [351].  The amount of CO slipped also decreased.  This was most likely 

the result of higher activity for the water gas shift (WGS) reaction at this temperature.  In both 

cases (250 and 500 °C), complete NOX conversion was observed during rich periods and 

therefore cannot explain increased CO consumption.  Alternatively, deeper oxidation of the 

support and/or precious metals during lean periods could potentially contribute to increased CO 

consumption at higher temperatures [393].  At 500 °C, NH3 production was delayed until 

approximately 5 s into the rich period.  Then, the NH3 concentration rapidly increased and the 

average concentration observed during the last 5 s of the rich period was approximately 1350 

ppm.  Under steady-state conditions, the average NH3 concentration for an AFR of 14.2 was 

approximately 1300 ppm, while the average CO concentration was approximately 3600 ppm.  As 

Fig. 56 demonstrates however, the CO concentration was still in a state of rapid transience when 
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the rich period was ended.  If the rich period had been extended, the CO and NH3 would 

eventually reach the steady-state values as previously discussed.  Another key feature is that the 

NH3 reaches its maximum value considerably faster than CO, which suggests that the timing can 

be adjusted to maximize NH3 formation while reducing the CO slip.  In summary, one 

particularly desirable feature of the HPGM TWC is its ability to rapidly produce significant 

amounts of NH3 that are virtually identical to the steady-state values, even during cycling.   

  The NOX and NH3 profiles observed in Fig. 56 were then integrated and averaged over 

four cycles to obtain the cycled averaged NOX slip and NH3 yield.  The ratio of these was then 

used as an additional metric for catalyst performance, as shown in Eqn. 27.   

S = ��3�THQ�JN�����U !"##��  (27) 

For example if α = 1, the amount of NH3 produced during the rich period is equal to the 

amount of NOX slipped during the lean period and a TWC-SCR system constructed using a 

“perfect” SCR catalyst (i.e., an SCR catalyst that could trap all of the NH3 produced and then use 

100% of that NH3 for NOX reduction) would achieve 100% NOX conversion.  In reality, a perfect 

SCR catalyst does not exist, but the cycle averaged α was used to determine the most promising 

operating conditions and catalysts. 

 The results shown in Fig. 57 display the cycle averaged α obtained for the HPGM 

catalyst as a function of temperature for rich AFRs of 14.4 and 14.2, respectively, where the 

solid dashed line demonstrates the critical α ≥ 1 threshold.  Unfortunately for the AFR of 14.4 

(with minimum associated fuel penalty), an α ≥ 1 was not observed for any of the temperatures 

considered, even though significant amounts of NH3 could be formed under these same 

conditions during steady-state operation (Fig. 54C).  In fact, NH3 formation above 350 °C for the 

rich AFR of 14.4 was especially poor.  This is an important result because it implies that richer  
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Figure 57.  The cycle averaged α as a function of temperature for rich period AFRs of 14.4 and 

14.2, respectively. 

 

AFRs are required during cycling in comparison to steady-state operation.  Generally, operation 

as close as possible to stoichiometric regime during rich periods is desired because it minimizes 

the rich period fuel penalty, but clearly an AFR of 14.4 will not suffice.  The differences in NH3 

formation between cycling and steady-state can most likely be attributed to H2/CO/C3H6 

oxidation reactions that occur during the first few seconds of rich operation before a net reducing 

environment is achieved, where the reductants consumed during this time could otherwise be 

used for production of NH3 under steady-state conditions.  Reduction of OSC, reduction of 

oxidized precious metal sites and reaction of reductants in the concentration front that propagates 

through the catalyst bed during the lean/rich transition could all contribute to reductant 

consumption.  As a side note, even the LNT (14.4 AFR data omitted for brevity) – where NOX 

storage capacity, as shown in Fig. 61, can dramatically increase the NH3 to NOX ratio – never 
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achieved an α ≥ 1 for a rich AFR of 14.4.  This provides even more substantial evidence that the 

slightly rich AFR of 14.4 will most likely never generate enough NH3 during cycling to warrant 

operation under these conditions.  For this reason, only results for rich AFRs of 14.2 were 

reported, with the exception of the results shown in Fig. 57.   

For a rich AFR of 14.2, an α ≥ 1 was obtained from approximately 275 – 425 °C, which 

clearly demonstrates that the HPGM catalyst can generate enough NH3 during cycling to 

theoretically operate a downstream SCR catalyst when operated under sufficiently rich 

conditions in an appropriate temperature range.  At 350 °C, the cycle averaged α reached a 

maximum at 1.47, which further supports the previous conclusion of NOX storage capacity over 

the HPGM TWC (Fig. 56).  In this case, an α > 1 confirmed NOX storage because equivalent 

doses of NOX were fed in lean and rich periods and the upper limit for α would therefore be 1.0 

unless some of the NOX fed during lean periods was stored and converted to NH3 during a 

subsequent rich period.  In a similar investigation, Li et al. [357] reported an AFR of 14.2 to be 

the optimum rich condition for lean/rich cycling, which agrees well with the results reported 

here.  

The results shown in Figs. 58 and 59 depict corollary lean/rich cycling experiments conducted 

over the LPGM and LNT as TWC, respectively.  The NOX profiles obtained during lean periods 

over the LPGM catalyst (Fig. 58) were very similar to the profiles obtained over the HPGM 

catalyst, which implied that the loading and ratio of precious metals on the TWCs did not have a 

significant impact on performance during lean periods.  However, the results obtained over the 

LPGM catalyst during rich periods were dramatically different.  For example at 250 °C, the peak 

NH3 concentration approached 1700 ppm, which was above the feed NOX concentration (1500 

ppm) and additionally confirmed NOX storage over the LPGM catalyst, but was substantially 
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lower than the peak NH3 concentration observed for the HPGM catalyst.  The corresponding 

cycle averaged α for the LPGM catalyst at this temperature was 0.9, where the cycle averaged α 

for the HPGM catalyst under the same conditions was 1.47.  This indicated that the LPGM 

formulation would either require a longer rich times or a richer, rich period to generate the same 

amount of NH3 as the HPGM catalyst.  Li et al. [358] previously reported similar results for a 

Pd-only and Pd/Rh TWC and concluded that the Pd-only catalyst may be preferred in the TWC-

SCR even though Pd/Rh catalysts have long been used for TWC-only configurations.  The CO 

concentration profile obtained over the LPGM catalyst also displayed interesting behavior, where 

CO breakthrough occurred rapidly and approached 7000 ppm before declining briefly to 2000 

ppm and then increasing back to 7000 ppm.  The dip in the CO concentration can most likely be 

explained by the OSC capacity provided by CeO2 on the LPGM catalyst, where Feio et al. [394] 

previously reported that reduction of CeO2 on a Pd/CeO2/Al2O3 catalyst did not begin until 

approximately 300 °C.  Since the furnace temperature in this case was set to 250 °C, it is likely 

that reduction of CeO2 was delayed until the catalyst temperature reached a temperature high 

enough to reduce CeO2.  Fig. 60 displays the temperature profiles for the four TWCs considered 

in this investigation and demonstrates the increase in temperature as a function of the rich period 

duration.  In all cases, a 150 °C exotherm was observed by the end of the rich period.  At 250 °C, 

light-off for the HPGM and Dual-Zone catalyst occurred more rapidly than light-off for the 

LPGM and LNT catalyst, respectively.  At 500 °C, a dip in the CO concentration was not 

observed.  Above 300 °C, temperature inhibited CO consumption should not occur since the 

catalyst temperature is well above 300 °C.  NH3 formation at this temperature was also 

substantially suppressed, where the peak concentration was only 200 ppm and declined 

throughout the rich period.  This corresponded to a cycle averaged α of only 0.08.  Clearly, 
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lean/rich cycling conducted over the LPGM catalyst at elevated temperatures resulted in very 

poor NH3 yields, which further indicates that the LPGM formulation may be a particularly poor 

candidate for the TWC-SCR approach.  Substantially lower NH3 yields for the Rh containing 

LPGM TWC were also observed for the steady-state experiments,  as previously discussed 

(4.4.1), and were previously attributed to higher rates of NO dissociation and/or NH3 

decomposition over Rh [43,47].    

 

  

  
Figure 58.  Lean/rich cycling over the LPGM, Pd/Rh TWC at 250 and 500 °C, respectively. 

(Same conditions as Fig. 56). 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 40 80 120 160 200 240

C
O
 C
o
n
c.
 (
p
p
m
)

N
2O
, N
H
3
co
n
c.
 (
p
p
m
)

Time (s)

N2O

CO

NH3

0

250

500

750

1000

1250

1500

1750

2000

N
O
, N
O
2
co
n
c.
 (
p
p
m
)

NO2

NO

NOX

0

1000

2000

3000

4000

5000

6000

7000

8000

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 40 80 120 160 200 240

C
O
 C
o
n
c.
 (
p
p
m
)

N
2O
, N
H
3
co
n
c.
 (
p
p
m
)

Time (s)

CO

NH3

0

250

500

750

1000

1250

1500

1750

2000

N
O
, N
O
2
co
n
c.
 (
p
p
m
)

NO2

NO

NOX

250 °C 500 °C 



www.manaraa.com

 

176 

 

  
Figure 59.  Lean/rich cycling over LNT as TWC at 250 and 500 °C, respectively. (Same 

conditions as Fig. 56) 
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lean period, the outlet NOX concentration was only 500 ppm and integration of the NOX profile 

confirmed that approximately 75% of the NOX fed during the lean period was stored.  During the 

subsequent rich period, a significant amount of NH3 was generated and the corresponding α was 

1.82, where the α for the HPGM catalyst under the same conditions was 1.47.  This is quite a 

significant result because a review of the steady-state results (Fig. 54B) would lead to the 

expectation of lower NH3 yields over the LNT in comparison to the HPGM catalyst.  This was 

not the case and demonstrates that NOX storage capacity on the TWC is one way to alter the 

catalytic formulation to increase NH3 formation during rich periods.  A dip in the CO 

concentration was also observed, where reduction of stored NOX in addition to reduction of OSC 

on the LNT could account for the additional CO consumption during rich periods.  It is 

encouraging to note that this delay is not observed with all reductants, particularly NH3.  It may 

suggest that the reduction of the OSC occurs more preferentially with CO than with NH3.  At 500 

°C, the LNT catalyst still stored NOX, but significantly less (approximately 50% of the NOX fed 

during the lean period was stored).  This translated in to an improved NH3 yield during the 

subsequent rich period in comparison to the LPGM catalyst (which mirrored the LNT catalysts 

under steady state operation), but the cycle averaged α was still only 0.20, while the α for the 

HPGM catalyst under the same conditions was 0.65.  Again, a comparison of the results 

collected under steady-state condition would lead to the expectation of lower NH3 yields over the 

LNT in comparison to the HPGM catalyst, as observed at 500 °C.  In summary, incorporation of 

NOX storage capacity could not overcome the inherently lower NH3 production capabilities of 

the LNT catalyst at elevated temperatures.   
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Figure 60.  Typical temperature exotherms observed the HPGM, LPGM, Dual-Zone and LNT 

catalysts during cycling at 250 and 500 °C, respectively. (Rich period AFR = 14.2). 
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operation) to the furnace set point.  At 40 s, the catalyst was switched back to rich operation and 

a rapid exotherm was observed.  By the end of the 20 s rich period, the catalyst had 

approximately reached the temperature measured under steady-state conditions, which indicated 

that a rich period lasting longer than 20 s would be expected to yield both the product 

distribution and catalyst temperature exhibited under steady-state operation. 

The results shown in Fig. 61 summarize the cycle averaged α values measured for all four 

catalysts as a function of temperature, where the dashed line again indicates the critical α ≥ 1 

threshold.  The LPGM catalyst generally exhibited the lowest NH3/NOX yields of all the 

catalysts considered in this investigation.  The LPGM catalysts also exhibited a narrow 

temperature region for an α ≥ 1, where sufficient NH3 could only be produced from 

approximately 325 °C to 400 °C.  The Dual-Zone catalyst and HPGM catalyst exhibited nearly 

identical NH3/NOX yields, with the HPGM catalyst being slightly better at lower temperatures.  

The HPGM and Dual-Zone catalyst also exhibited a very similar temperature region with 

favorable NH3/NOX yields.  However at higher temperatures, the Dual-Zone catalyst became 

noticeably inferior to the HPGM catalyst.  Again, NH3 decomposition over the downstream 

Pd/Rh/CeO2 TWC likely consumed some of NH3 formed on the upstream HPGM portion of the 

Dual-Zone catalyst [382].  While subtleties existed between the TWCs, a maximum α was 

generally observed between 300 – 400 °C with an optimum operation window between 275 – 

425 °C.  The maximum α for the TWCs also never exceeded 1.47 (HPGM), under these 

conditions.  The LNT catalyst on the other hand, exhibited a maximum α at 400 °C and was able 

to maintain an α ≥ 1 for a larger temperature range from approximately 275 to 500 °C.  The cycle 

averaged α near the optimum was especially pronounced and almost 5 times more NH3, in 

comparison to the amount of NOX slipped, was produced over the LNT catalyst.  This is 
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additionally encouraging because this dramatic improvement was observed over a catalyst that 

demonstrated relatively poor NH3 generation capabilities under steady-state operation, especially 

when compared to the HPGM catalyst.  Therefore, the results in Fig. 61 clearly demonstrate that 

adding an “optimal” amount of NOX storage capacity to a TWC could substantially increase the 

NH3/NOX yield and make the operation of passive TWC-SCR more efficient.  Currently, the 

“optimal” amount of NOX storage capacity has not been investigated.  Sulfur poisoning of Ba 

sites at elevated temperatures [35,105] and long-term, high-temperature stability of the Ba 

storage component (e.g., formation of BaAl2O4) [162,192] will also need to be addressed, where 

the addition of CeO2 may decrease losses in NOX storage capacity in both cases [180,234,395].   

 

 

Figure 61.  The cycle averaged α as a function of temperature for the HPGM, LPGM, Dual-Zone 

and LNT catalysts. (Rich period AFR = 14.2). 
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CYCLE AVERAGED NOX, CO AND C3H6 CONVERSIONS AND N2O YIELD 

The results shown in Fig. 62 summarize the cycle averaged NOX, CO and C3H6 

conversion for all of the catalysts considered in this investigation.  In the TWC-SCR system, the 

NOX (and potentially C3H6 [334]) conversion would be improved by the inclusion of a 

downstream SCR catalyst.  Conversely, the CO conversion would most likely not improve in the 

TWC-SCR system because additional CO oxidation/conversion over the downstream SCR 

catalyst under a net rich environment is highly unlikely unless the WGS reaction [396] and NH3-

SCR reaction occur simultaneously. For example, even in the presence of O2, CO oxidation over 

a Cu-ZSM5 catalyst at 250 °C was minimal [397], while CO oxidation over a Pd/CeO2/Al2O3 

(0.155/20%, w/w) catalyst under similar conditions had approximately reached complete 

conversion [398].  Therefore, the cycled average NOX conversion for the TWC-SCR system 

would be higher, but the CO and C3H6 conversions will most likely be very similar to the values 

reported here. 

As previously discussed, cycle averaged NOX conversions exceeding 50%, as designated 

by the dashed line, confirmed NOX storage on the catalysts.  The results obtained over the LNT 

were most pronounced and a cycled averaged NOX conversion of approximately 90% was 

measured near the optimum operating temperature for that particular catalyst [376].  Generally, 

NOX was stored on all of the catalysts considered, at least up to 500 - 550 °C; by 600 °C, the 

NOX storage capacity had been eliminated even for the LNT catalyst.  Direct NO decomposition 

over reduced precious metal sites could also occur after the catalyst was switched back to lean 

operation, but if occurring, this phenomenon would be expected to occur for a very brief period 

and account for minimal increases in the amount of NO reduced, since Amirnazmi, Benson and 

Boudart [399] reported a strong inhibiting effect for O2 on NO decomposition.   
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Figure 62.  The cycled averaged NOX, CO and C3H6 conversion as a function of temperature for 

the HPGM, LPGM, Dual-Zone and LNT catalyst.  (Rich period AFR = 14.2). 
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Below 300 °C, the LPGM and LNT catalyst exhibited especially poor overall 

performance in comparison to the HPGM and Dual-Zone catalyst and correspondingly lower 

cycle averaged NOX, CO and C3H6 conversions were measured.  In this case, the lower PGM 

loadings on the LPGM and LNT catalyst most likely explain this behavior.  For example, it is 

generally accepted that the easiest way to improve the low-temperature activity of a TWC is to 

increase the PGM loading [279].  As a result, the HPGM and Dual-Zone catalyst offered more 

robust performance as the temperature was decreased and complete NOX conversion during rich 

periods was still observed for the lowest temperatures considered.  Alternatively, the LPGM and 

LNT catalysts slipped significant amounts of NOX during rich period, which explains why the 

NOX conversion dropped below 50% for these catalysts.  Additionally, complete light-off was 

not observed below 250 °C and in both cases the rich period temperature exotherm was below 

100 °C, while the HPGM and Dual-Zone catalysts exhibited a temperature exotherm of 

approximately 150 °C.  For complete light-off, an exotherm of approximately 150 °C was 

expected, as further demonstrated in Fig. 60.  This further indicated that the LPGM and LNT 

catalyst underwent a longer and slower light-off process at the lowest temperatures considered, 

which ultimately resulted in poor overall performance.   

 The results obtained for the cycle averaged CO conversions were quite complex.  As 

discussed, the poor CO conversion below 300 °C for the LPGM and LNT catalyst can most 

likely be explained by the lower activity of those catalysts at low temperatures.  For the HPGM 

and Dual-Zone catalyst, this is not the case and the higher CO conversion was most likely a 

combination of rapid CO oxidation and NOX reduction.  As the temperature was increased above 

300 °C, the WGS reaction most likely explains the additional increase in CO conversion that was 

observed.  Light-off for the WGS reaction over a Pt/Al2O3 catalyst was previously reported to 
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occur around 275 °C [383].  Nova et al. [64] similarly reported significant WGS activity over a 

Pt/Ba/Al2O3 LNT catalyst by 300 °C.  Reduction of stored NOX, especially for the LNT catalyst 

at lower temperatures, could also contribute to CO consumption, and therefore makes 

deconvolution of the different effects even more difficult.  As the temperature was increased 

above 450 °C, the CO conversions for all of the catalysts were effectively identical.  This 

behavior was not surprising since all of the catalysts were highly active for CO oxidation, NOX 

reduction and the WGS reaction under these conditions.  The NOX storage capacity also begins 

to decrease at these temperatures and the controlling factor for the measured CO conversion 

becomes the equilibrium conversion of the WGS reaction.  The results for C3H6 conversion 

demonstrate a more typical light-off curve profile even though these results were collected under 

cycling conditions, which demonstrated that C3H6 conversion is primarily controlled by 

temperature. Abdulhamid et al. [27] previously reported significant activity for C3H6 above 350 

°C, but poor utilization of the HC for lower temperatures, as also observed here.  Again, 

differences in the C3H6 conversion measured at low temperature were most likely due to 

differences in PGM loadings. 

 In summary, comparison of the results in Fig. 61 with the results of Fig. 62 imply an 

optimum operating temperature for the TWC between 400 to 450 °C.  In this fairly narrow 

regime, the cycled averaged NOX conversion was high, all of the catalysts could stored some 

NOX, the cycled averaged α was generally ≥1 (expect for the LPGM catalyst), a maximum in CO 

conversion was observed and lastly propylene conversion was 100%.  Above 500 °C, the 

increased NOX conversion provided via NSC was eliminated, the CO conversion began to 

decline (since both the WGS equilibrium conversion declines and less NOX is stored) and only 

the HPGM catalyst generated enough NH3 to yield a reasonable cycle averaged α.  At lower 
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temperatures (275 – 400 °), the cycled averaged α was generally higher, but the CO conversion 

was significantly lower and C3H6 slip also became a problem under these conditions.  Crocker et 

al. [334] previously reported that the conversion of NOX by C3H6 and NH3 was additive, but the 

amount of C3H6 stored in comparison to NH3 was quite low so the majority of C3H6 might still be 

slipped from the SCR under these conditions.  Therefore, operation at lower temperatures would 

only be feasible if the lean/rich cycle timing could be increased as a result of increased NH3 

production, which would limit the amount of CO and C3H6 released because less time would be 

spent operating rich.     

 The results shown in Fig. 63 depict the cycle averaged N2O yield measured for all of the 

catalysts considered in this investigation.  At low temperatures, a fairly significant amount of 

N2O was formed, especially for the LPGM catalyst.  Pihl et al. [351] previously observed that 

low temperatures favored N2O formation over LNT catalysts.  Burch and coworkers [3,16,400] 

similarly explained that at lower temperatures, NO dissociation occurs more slowly and therefore 

favors N2O formation either through coupling of an adsorbed N and NO adatom or through an 

adsorbed (NO)2 dimer.  Bowker et al. [401] measured the sticking coefficient for NO on a 

Pd(110) surface and observed a decrease in the sticking coefficient with increasing temperatures 

and proposed that N2O formation was favored at lower temperatures because the lifetime of 

molecular NO on the surface was longer.  Obuchi et al. [389] similarly observed N2O formation 

over a Pd foil at low temperatures, but N2O formation over a Rh foil [390] was below the 

detection limit.  The effect of catalyst formulation on N2O formation has also been observed by 

Macleod et al. [380].  More recently, Ji et al. [140] discussed the role of the 

regeneration/oxidation front on N2O formation, where transition from lean/rich or rich/lean  
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results in a reaction front that passes over the catalyst bed and alters the H/NO ratio on the metal 

surface.   

In this case, the LNT catalyst generally produced the most N2O, with the exception of 

results collected at the lowest temperature considered.  Since the LNT is basically a TWC with 

Ba, it would appear that the addition of NSC increased the amount of N2O formed.  One 

potential reason for this behavior could be the “sea” of stored NOX present on the catalyst when 

regeneration begins, which in turn increases the likelihood of high NOX/H ratios during this 

transition.  As the temperature was increased, the formation of N2O decreased.  By 400 °C, the 

formation of this undesirable global warming pollutant was substantially decreased.  At the 

highest temperatures considered, N2O formation was negligible.  While N2O was formed, the 

downstream SCR catalyst may actually further decrease the N2O yields in the combined TWC-

SCR system, as Wang and Crocker et al. [335] recently reported N2O reduction over Cu-zeolite 

catalysts.  Lastly, the simultaneous low N2O yields for high NH3 yields offered by the TWC-

SCR system is potentially one of the most attractive aspects of this system because similar 

screening investigations conducted for LNT-SCR systems concluded that NH3 and N2O yields 

peaked under almost identical conditions for LNT catalysts [340,376]. 
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Figure 63.  The cycled averaged N2O yield as a function of temperature for the HPGM, LPGM, 

Dual-Zone and LNT catalyst. (Rich period AFR = 14.2). 

4.5 CONCLUSIONS 

NH3 formation under steady-state and lean/rich cycling conditions was investigated using 
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formation.  As the temperature was increased, a richer AFR was necessary to achieve the same 

NH3 yield observed at lower temperatures.   

For cycling, a significantly richer AFR was required to produce a similar amount of NH3 

observed during the steady-state experiments.  Consumption of CO, and other reductants, in the 

lean/rich front that propagates through the catalyst bed, reduction of oxidized precious metal 

sites and oxygen storage capacity (OSC), especially for CeO2 containing formulations, could 

explain why a richer AFR was necessary during cycling.  The optimum catalysts and conditions 

were determined using a new parameter defined as the cycle averaged α (ratio of NH3 produced 

to NOX slipped).  The HPGM catalyst demonstrated the most robust α over the entire 

temperature range considered, with an optimum between 275 to 400 °C.    At moderate 

temperatures (275 – 500 °C), inclusion of NOX storage capacity (i.e., results collected for the 

LNT) dramatically increased the amount of NH3 produced in relation to the amount of NOX 

slipped, even though the LNT catalyst generally exhibited the lowest NH3 yields for steady-state 

operation.  This implied that inclusion of an “optimum” amount of NOX storage capacity could 

dramatically improve the performance of the TWC-SCR system.  Above 500 °C, only the 

HPGM produced enough NH3 to theoretically operate a TWC-SCR system.  When the CO and 

C3H6 conversions were considered in addition to the NH3 formation, the optimum temperature 

for this system was determined to be approximately 400 – 450 °C, but CO slip continue to be a 

concern.  N2O formation, on the other hand, was insignificant for temperatures above 400 °C, 

which is a unique advantage of TWC-SCR system. 
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CHAPTER 5.  CONCLUSIONS  

Lean-burn gasoline engines are more fuel efficient than conventional, stoichiometric-burn 

ones.  Although the improvements are relatively modest, if implemented across the entire U.S. 

automotive fleet, lean-burn engines could have far-reaching implications on the amount of 

gasoline imported in the country on an annual basis.  However, the development of cost-effective 

catalytic converter catalysts capable of meeting emission regulations for lean-burn vehicles still 

represents a major technical challenge.  Currently, three-way (TWC), lean NOX trap (LNT) and 

selective catalytic reduction (SCR) and combinations thereof represent the possible solutions.  In 

this dissertation, the three most promising configurations were considered (i.e., TWC+LNT, 

TWC + LNT + SCR, and TWC + SCR). 

In Chapter 2, a fundamental investigation of the NOX reduction mechanism by CO and 

C3H6 in the presence of water was performed over Pt/BaO/Al2O3 and Rh/BaO/Al2O3 model LNT 

catalysts using in situ FTIR spectroscopy.  Quantification of the FTIR results was then 

performed using corollary experiments monitored using mass spectroscopy.  The FTIR results 

indicated that surface nitrites were the predominant NOX storage form at 250 °C, while surface 

nitrates became the predominant storage form at 350 °C.  The presence of water did not have a 

significant effect during storage.  Surface isocyanates (NCO) were formed under a variety of 

conditions and their concentration was dependent on the temperature, the reductant selected, the 

presence of H2O and the type of precious metal used.  The reaction of surface NCO species with 
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NO and O2 was fast and catalyzed by precious metals, with no difference observed between Pt 

and Rh.  A similarly fast reaction was also observed with H2O, even in the absence of the noble 

metal component.  Comparison of N2 evolution amounts during the rich phase and subsequent 

reaction of residual NCO species with O2 and NO confirmed that reaction of NCO species could 

contribute significantly to the total amount of N2 formed, when CO is used as the reducing agent.   

In Chapter 3, a commercial LNT catalyst – obtained from a BMW 120i, lean-burn 

gasoline engine exhaust tailpipe – was evaluated during lean/rich cycling for potential 

application in an LNT-SCR system.  The NH3 yield in comparison to the NOX was carefully 

tracked as a function of lean/rich cycle timing and temperature in order to determine if the cycle 

timing could be used as a parameter for concerted NH3 generation.  Two lean/rich cycling 

regimes were clearly identified.  At low temperatures, NOX release and reduction were 

kinetically limited.  Therefore, a longer, lower concentration rich dose favored increased cycle 

averaged NOX conversions.  For example, extending the rich period from 5 to 15 s at 250 °C, 

while holding the reductant dose constant, resulted in an increase in cycle averaged NOX 

conversion from 59 to 87%, respectively.  At high temperatures, the opposite was true and 

shorter, higher concentration rich doses resulted in higher NOX conversions.  The selectivity to 

NH3 and N2O was shown to primarily be a function of temperature and the selectivity generally 

increased as the temperature decreased. NH3 and N2O yields, on the other hand, were 

significantly affected by the cycling timing any combination of changes in the lean/rich timing 

protocol or reductant concentrations that resulted in increased NOX conversion also resulted in 

increased NH3 and N2O yield.  Lastly, concerted control of NH3 formation by varying the 

lean/rich cycle timing was demonstrated.  While tuning the lean/rich timing could improve the 
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amount of NH3 formed in comparison to the amount of NOX slipped, the N2O yield also 

increased under the same conditions. 

In Chapter 4, NH3 formation under steady-state and lean/rich cycling conditions was 

investigated using a three commercial TWCs and the LNT catalyst from Chapter 3 for 

application in a TWC-SCR system.  NH3 formation during steady-state operation was dependent 

on the AFR, temperature and catalytic formulation, but all of the formulations could produce 

significant amounts of NH3 if operated under sufficiently rich conditions.  The selectivity to NH3 

was always lower for the Rh and/or CeO2 containing formulations.  In all cases, the high 

precious metal loading, Pd-only TWC produced the most NH3 during steady-state operation.  For 

cycling, a significantly richer AFR was required to produce similar amount of NH3 as observed 

during the steady-state experiments.  Again, the Pd-only catalyst demonstrated the most robust 

NH3 formation over the entire temperature range considered, with an optimum between 275 to 

400 °C.    However, inclusion of NOX storage capacity (i.e., results collected over the LNT 

catalyst) demonstrated that NOX storage capacity could significantly increase the amount of NH3 

produced in relation to the amount of NOX slipped, even though the LNT catalyst generally 

exhibited the lowest NH3 yields for steady-state operation.  This implied that inclusion of an 

“optimum” amount of NOX storage capacity could significantly improve the performance of the 

TWC-SCR system.  When CO and C3H6 conversions were considered in addition to the NH3 

formation, the optimum temperature for this system was determined to be approximately 400 – 

450 °C, but CO slip will still need to be addressed.  N2O formation, on the other hand, was 

insignificant for temperatures above 400 °C, which is a unique advantage of TWC-SCR system. 
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APPENDICES 

 

A.1   PRELIMINARY IN SITU FTIR RESULTS COLLECTED OVER AL2O3, PT/AL2O3, BA/AL2O3 

AND PT/BA/AL2O3 

 

A.1.1 EXPERIMENTAL METHODS 

MATERIALS AND PREPARATION 

All catalysts were prepared by incipient wetness impregnation using aqueous solutions of 

barium acetate (Alfa Aesar) and tetraammineplatinum (II) nitrate (Sigma-Aldrich), as 

summarized in Table A1.  Prior to impregnation, Catalox® SBa-200 γ-Al2O3 (Sasol) was 

calcined for 24 hr at 600 °C.  Ba was deposited first, dried for 24 hr at R.T., dried for 12 hr at 

120 °C and calcined in air for 12 hr at 600 °C.  Then, Pt was deposited, dried for 24 hr at R.T., 

dried for 12 hrs at 120 °C and calcined in air for 5 hr at 500 °C.   

   

Table A1. List of catalysts prepared for the preliminary in situ  FTIR investigation. 

Catalyst Pt (wt %) Ba (wt %) Al2O3 (wt %) 

 

Al2O3 - - Bal. 

Pt/Al2O3 1.0 - Bal. 

Ba/Al2O3 - 17.0 Bal. 

Pt/Ba/Al2O3 1.0 17.0 Bal. 
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FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

Spectra were collected on a Nexus 470 FTIR spectrometer operated in transmission mode 

with 2 cm
-1 

resolution, where 30 scans per spectra were collected for storage experiments (30 s 

collection time) and 19 scans per spectra were collected for cycling experiments (20 s collection 

time).  The catalysts were pressed into self supported wafers (≈ 15-20 mg cm
-2

) using a die from 

International Crystal Laboratories.  Analysis was performed in a homemade cell consisting of a 

stainless steel tube (1.5” ID X 4.5” L) with cooling water flanges welded to each end.  The 

flanges were machined to accommodate polished windows (NaCl 32mm x 3mm – Alfa Aesar) 

that were held in place by Viton gaskets.  Cooling water was passed through the flanges to keep 

the Viton gasket temperature below 100 °C.  The cell was wrapped in a 400 W, 4 ft heating cord 

(Glas-Col), which allowed heating up to 400 °C. A thermocouple was placed in close proximity 

to the sample for determination of catalyst temperature.   A gas manifold with five mass flow 

controllers (Brooks 5890E – CO, Tylan – NO, NO2, O2, He, H2, C3H6) and two needle valves 

(Swagelok – He) delivered the mixed gas to the cell, where appropriate gases were purified by 

high capacity water and moisture traps (Restek).  Certified gas mixtures were purchased from 

National Welders and included: 1% NO in He, 1% H2 in He, 1% NO2 in He, 1% C3H6 in He, 3% 

CO in He, 10% O2 in He, pure H2 and pure He.  Flow through the cell was maintained at 100 cm
3
 

min
-1

 throughout all experiments.   

Two types of experiments were performed (conditions shown in Table A2).  First, the 

catalysts were characterized by adsorption of NO, NO2, NO+O2 or CO at RT or 350 °C for 20 

min.  These experiments are referred to as “storage experiments” and were used to compare 

storage capacity and assign peaks.  Then, samples were investigated under more realistic cycling 

conditions in order to observe intermediate species.  Cycling was performed using 2 min. lean 
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phases (Table A2), followed by a 2 min He flush to remove all O2 and lastly, a 2 min rich phase 

(Table A2).  Reductants were investigated separately (i.e., Rich CO refers to cycling with CO as 

the reductant and Rich H2 refer to cycling with H2 as the reductant).  Prior to experiments, 

samples were reduced for 30 min. in H2 at 400 °C, flushed for 15 min in He, oxidized for 5 hr in 

10% O2 in He at 400 °C, flushed for 1 hr in He at 400 °C and cooled to either RT or 350 °C for 

experiments.  The same sample was used to complete one set of data.  Fresh samples underwent 

additional pretreatment to remove stable carbonates species, where the catalyst was treated in 

0.5% NO, 5% O2 in He mixture at 400 °C for 5 hr, reduced in pure H2 for 1 hour, and 

subsequently treated as described above.  After all pretreatments, a background spectra was 

collected and used for subtractions. 

 

Table A2.  Gas concentrations (mole %) during storage and cycling Experiments. 

Storage 

Experiment NO (%) NO2 (%) CO (%) H2 (%) C3H6 (%) O2 (%) He (%) 

NO 0.1 - - - - - Bal. 

NO + O2 0.1 - - - - 5.0 Bal. 

NO2 - 0.1 - - - - Bal. 

CO - - 0.1 - - - Bal. 

Cycling  

Experiment 

Lean 0.1 - - - - 5.0 Bal. 

Rich CO - - 0.9 - - - Bal. 

Rich H2 - - - 0.9 - - Bal. 

  Rich C3H6 - - - - 0.1 - Bal. 
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A.1.2 IN SITU FTIR STORAGE EXPERIMENTS 

Storage of NO, NO + O2, NO2 and CO at room temperature (RT) and 350 °C was 

investigated by in situ FTIR spectroscopy on pre-oxidized Al2O3, Pt/Al2O3, Ba/Al2O3 and 

Pt/Ba/Al2O3 samples in order to confirm observations and mechanisms presented in the literature 

[21,22,24,27,31,33,34,37,38,41,43,112,179].  While RT spectra were included, a higher 

emphasis was placed on spectra collected at 350 °C since this represents a relevant storage 

temperature.  Many bands assignments should be considered tentative since overlapping bands 

from a variety of possible nitrite and nitrate species makes definitive assignments difficult, if not 

impossible [50–52,402]. 

NO 

Exposure of pre-oxidized Al2O3 catalyst to NO at RT resulted in the formation of low 

intensity bands at 1650, 1581, 1463, 1322, 1232 and 1080 cm
-1 

(Fig. A1).  The bands at 1650 and 

1581  cm
-1

 were assigned to nitrates, where a bridging bidentate nitrate, monodentate nitrate or 

chelating bidentate nitrate could all account for bands in this region of the spectra [22,31,33,34].  

The band at 1463 cm
-1

 was assigned to a linear nitrite, while the bands at 1322 and 1232 cm
-1

 

were assigned to a bridged bidentate nitrite.  Similarly, exposure of pre-oxidized Pt/Al2O3 to NO 

at RT resulted in formation of low intensity bands at 1783, 1652, 1582, 1465, 1322, 1232 and 

1078 cm
-1

.  The band at 1783 cm
-1 

was consistent with a Pt mononitrosyl, where the other bands 

correspond to previously assigned nitrogen oxide species adsorbed on Al2O3. 

 Exposure of Ba/Al2O3
 
to NO at RT resulted in formation of bands at 1647, 1560, 1448 

and 1390 cm
-1

.  Assignment of these bands was difficult and it was unclear if bands at 1647, 

1560 and 1448 cm
-1

 were associated with the Al2O3 and/or BaO-BaCO3 storage component.  It is 
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worth mentioning that the relative intensity between the 1650 and 1582 cm
-1

 changes when Ba is 

added to the Al2O3 support.  This may infer storage to be occurring on Ba or Ba may occupy 

sites previously accessible to NOX on the bare alumina support.  The band at 1390 cm
-1

 was not 

assigned, as it was only observed for the Ba/Al2O3 sample during exposure to NO in the absence 

of O2. 

Addition of Pt to the Ba/Al2O3 sample completely changed the spectra and bands at 1541, 

1443, 1417, 1373, 1314, 1209 cm
-1

 were observed after exposure to NO at RT.  The band at 1541 

cm
-1

 was most likely associated with a monodentate nitrate or bidentate nitrate on Ba, while 

bands at 1443, 1417, 1373 and 1314 cm
-1

 could be assigned to monodentate nitrates, 

monodentate nitrites, linear nitrites, or hyponitrites on Ba [22,31,33,34].  Additionally, these 

bands could be associated with NOX species adsorbed on Al2O3 or on sites in close proximity to 

Ba, where definitive assignments is difficult because a large number of NOX species adsorbed on 

both Ba and Al2O3 at room temperature.  The band at 1209 cm
-1 

was assigned to a bridging 

bidentate nitrite on Ba. 

Assignment of NOX species adsorbed on Al2O3, Pt/Al2O3, Ba/Al2O3 and Pt/Ba/Al2O3 at 

350 °C was more straightforward as seen in Fig. A2.  Exposure of Al2O3 to NO at 350 °C 

resulted in very weak bands at 1312 and 1229 cm
-1

, which were assigned to bridged bidentate 

nitrites (Fig. A2).  For Pt/Al2O3, a band at 1555 cm 
-1

 was observed in addition to bands 1297 

and 1234 cm
-1

. 

The band at 1234 cm
-1

 was assigned to bidentate nitrites, while the band at 1555 cm
-1

 was 

most likely associated with bridging bidentate nitrates, chelating nitrates or monodentate nitrates, 

with another vibration occurring around 1297 cm
-1

.  The nitrate peak was centered at 1555 cm
-1

, 

but contained shoulders at higher and lower wavenumbers.  Storage of NO on Pt/Al2O3 at 
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elevated temperatures probably included a combination of bridging bidentate nitrates, chelating 

nitrates and monodentate nitrates, which would account for the shoulders.  Exposure of Ba/Al2O3 

to NO at 350 °C resulted in formation of a band at 1211 cm
-1

, which was previously assigned to 

a bridging bidentate nitrite on Ba.  While storage of NOX was observed for Ba/Al2O3, the storage 

capacity was low and occurred mainly in the form of nitrites. 

Exposure of Pt/Ba/Al2O3 to NO at 350 °C resulted in formation of a band at 1213 cm
-1

, 

which was assigned to a bridged nitrite on Ba (Fig. A2).  With increased time of exposure, bands 

at 1742, 1418 and 1306 cm
-1

 also formed and grew in intensity.  Furthermore, the Pt/Ba/Al2O3 

catalyst was the only catalyst tested to show appreciable storage when exposed to NO in the 

absence of O2.  Fanson et al. [43] also observed significant storage of NO on Pt/Ba/Al2O3 

catalysts, but their results were obtained at RT
 
.  In our case, significant storage was only 

observed at elevated temperatures.   

The band at 1742 cm
-1 

was assigned to a NOX species coordinated on Pt, where the shift 

to lower wavenumbers could be explained by elevated temperatures, the state of Pt or the 

chemical environment of Pt (i.e., Pt deposited on Ba may have different electronic properties) 

[37].  The bands at 1418 and 1306 cm
-1

 were assigned to “bulk-like” ionic nitrates on Ba 

[21,24,34,40,187,188,191]. 

This data corroborates well with other results, where Pt increases storage capacity and 

catalyzes the transition from nitrites to nitrates [22,86].  It also supports the mechanism involving 

nitrites as intermediate species in the formation of nitrates [21,22,31,34,39].  However, an 

alternative mechanism, as previously suggested by Fanson et al. [43], where NO directly 

interacts with the Ba and the main role of Pt is to provide atomic oxygen, possibly though NO 

decomposition, cannot be ruled out. 
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Figure A1.  Adsorption of 1000 ppm NO in He at RT on (A) Al2O3, (B) Pt/Al2O3, (C) Ba/Al2O3, 

(D) Pt/Ba/Al2O3.  Spectra shown after 0, 0.5, 1, 2, 3, 5, 10 & 20 min., respectively.  

 

  

  
Figure A2.  Adsorption of 1000 ppm NO in He at 350 °C on (A) Al2O3, (B) Pt/Al2O3, (C) 

Ba/Al2O3, (D) Pt/Ba/Al2O3.  Spectra shown after 0, 0.5, 1, 2, 3, 5, 10 & 20 min., respectively.  
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NO + O2  

Addition of oxygen to the feed drastically increased the concentration of nitrite and 

nitrate species for all of the catalysts investigated both at RT and 350 °C, as shown in Figs. A3 

and A4.  Fridell et al. and others previously established the beneficial role O2 plays in NOX 

storage [22,62].  Admission of NO+ O2 over Al2O3 and Pt/Al2O3 at RT resulted in formation of 

bands at 1792, 1585, 1548, 1466, 1316, 1230 and 1077 cm
-1

 (Fig. A3).  The band at 1792 cm
-1

 

was previously assigned to mononitrosyls on Pt and bands at 1585, 1548, 1466, 1316, and 1230   

cm
-1

 were assigned to monodentate or chelating nitrates, linear nitrites, and bridging nitrites, 

respectively.  The band previously observed at 1650 cm
-1

 was no longer resolved, but seemed to 

be present as a shoulder on the 1585 cm
-1

 band.  The strong band at 1077 cm
-1

 could be assigned 

to a bridged N-coordinated nitrite, a chelating bidentate nitrate or a bridged bidentate nitrate.   

Exposure of Ba/Al2O3 to NO + O2 at RT resulted in formation of bands at 1549, 1478, 

1347, and 1212 cm
-1

.  It is worth noting the large differences observed between NO and NO + O2 

exposure, as shown in Fig. A1 and A3, respectively.  In the presence on O2, storage occurred 

mainly as a bridged bidentate nitrite species, while in the absence of O2 a series of bands at 1647, 

1560, 1448 and 1390 cm
-1

 were observed.  In this case, the bands at 1549, 1478 and 1347 cm
-1 

in 

Fig. A3 were assigned to monodentate nitrates/nitrites on Ba or Al, linear nitrites on Ba or Al or 

hyponitrites on Ba or Al. 

Exposure of Pt/Ba/Al2O3 to NO + O2 at RT resulted in formation of bands at 1543, 1420, 

1331 and 1212 cm
-1

 (Fig. A3).  While the primary feature was the bidentate nitrite species at 

1212 cm
-1

, formation of ionic nitrate species at 1310 and 1420 cm
-1

 and bidentate nitrate species 

at 1543 cm
-1

 indicated the transition from surface nitrites to surface and bulk nitrates with 

increasing time even at RT and demonstrated the influential role of Pt. 
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At 350 °C, exposure of Al2O3 to NO + O2 resulted in formation of low intensity bands at 

1552 and 1231 cm
-1

, where the band at 1552 cm
-1

 was consistent with a bridged bidentate nitrate, 

chelating nitrate or monodentate nitrate and the band at 1231 cm
-1

 was consistent with a 

bidentate nitrite.  Interestingly, nitrate formation was observed over Al2O3 even in the absence of 

a precious metal.  Significantly higher storage was observed for Pt/Al2O3 exposed to NO + O2 at 

350 °C (Fig. A4).  Bands at 1574, 1296 and 1245 cm
-1

 were consistent with nitrate features, 

where storage most likely occurred as a bridging bidentate nitrate or chelating bidentate nitrates.  

Monodentate nitrates were also possible, but lack of a band in the 1400-1300 cm
-1

 region 

inferred storage in this form to be unlikely.  Additionally, storage of NOX as a bidentate nitrite 

was only observed at shorter times.  With increased time of exposure, the band at 1230 cm
-1

 

disappeared.  This further demonstrated the critical role of Pt, where nitrites stored on the surface 

were not observed because Pt catalyzed rapid conversion from nitrites to nitrates either by 

providing atomic oxygen or oxidizing NO to NO2, which could further oxidize the nitrites to 

nitrates. 

Exposure of Ba/Al2O3 to NO + O2 at 350 °C demonstrated a similar trend as Al2O3, 

where storage occurred primarily as nitrites with formation of nitrates at increased times of 

exposure (Fig. A4).  The primary band at 1208 cm
-1

 was assigned to bidentate nitrites, while less 

intense bands at 1300 and 1415 cm
-1

 were assigned to ionic nitrates.  A band also appeared 

between 1600 -1500 cm
-1

, but it was masked by a negative band at 1560 cm
-1

 associated with 

decomposition of BaCO3.  It is worth mentioning that exposure of Ba/Al2O3 to NO at 350 °C 

resulted solely in the formation of nitrites (1210 cm
-1

).  Therefore, the presence of oxygen 

facilitated storage as nitrates and conversion from nitrites to nitrates, but total storage capacity 

remained low in comparison to Pt/Ba/Al2O3 catalysts. 
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Exposure of Pt/Ba/Al2O3 to NO + O2 at 350 °C resulted in significant storage of NOX, as 

demonstrated by Fig. A4.  Intense bands at 1744, 1547, 1418 and 1306 cm
-1

 were observed and 

corresponded to nitrosyls on Pt, bidentate nitrates, and ionic nitrates (1418 and 1306 cm
-1

) on Ba, 

respectively.  Initially, a band at 1223 cm
-1

, assigned to a nitrite on Ba, was observed.  However, 

this peak was no longer evident at longer times.  It is possible that the nitrite was still present, but 

its vibration was masked by the much larger band at 1306 cm
-1

.  In conclusion, Pt/Ba/Al2O3 

exposed to NO + O2 at 350 °C stored significantly more NOX than Al2O3, Pt/Al2O3 and 

Ba/Al2O3, where storage occurred primarily as ionic nitrates.  Conversion from nitrites to nitrates 

was observed at shorter times (<30 sec), but nitrites were no longer observed at longer times, 

which provided further evidence for a nitrite to nitrate storage mechanism. 

 

  

  
Figure A3.  Adsorption of 1000 ppm NO + 5% O2 in He at RT on (A) Al2O3, (B) Pt/Al2O3, (C) 

Ba/Al2O3, (D) Pt/Ba/Al2O3.  Spectra shown after 0, 0.5, 1, 2, 3, 5, 10 & 20 min., respectively. 
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Figure A4.  Adsorption of 1000 ppm NO + 5% O2 in He at 350 °C on (A) Al2O3, (B) Pt/Al2O3, 

(C) Ba/Al2O3, (D) Pt/Ba/Al2O3.  Spectra shown after 0, 0.5, 1, 2, 3, 5, 10 & 20 min., respectively. 

NO2 

Exposure of Al2O3, Pt/Al2O3, Ba/Al2O3 and Pt/Ba/Al2O3 to NO2 was also performed.  It 

is worth noting that exposure to NO2 instead of NO or NO + O2 effectively negates the beneficial 

role of Pt, where the main role of Pt is to adsorb and oxidize NO to NO2.  Additionally, many 

groups have stressed the importance of the Pt/BaO interface in NOX storage, where Pt acts like a 

bridge for NOX to adsorb and spillover onto the Ba component where storage ultimately occurs 

[8,21,29,46,66,69,73,74].   Sakamoto et al. [71] suggested storage and reduction of NOX to occur 

within a few micrometers of the Pt particle and mentioned that preferential adsorption and 

reduction of NOX occurring in close vicinity to Pt particles could explain why only 20% of the 

deposited Ba participates in storage [72].  Therefore if NO2 is selected as the NOX source, all 
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disproportionation mechanism presented by Prinetto et al. [40] and others [38,41,42], where 

disproportionation proceeds through oxidation of BaO to BaO2 by gas phase NO2 which 

subsequently adsorbs two molecules of NO2 to form Ba(NO3)2. 

Figs. A5 and A6 demonstrate exposure of NO2 at RT and 350 °C, respectively for Al2O3, 

Pt/Al2O3, Ba/Al2O3 and Pt/Ba/Al2O3.  In all cases, formation of intense bands assigned to nitrates 

on Al2O3 or Ba were observed.  Initially, nitrites were observed, but they were rapidly oxidized 

to nitrates.  Prinetto et al. [34] and Nova et al. [21] previously reported that exposure of NSR 

catalysts to NO2 only yielded nitrates.  However, Sedlmair et al. [31] observed nitrite species 

when Pt/Ba/Al2O3 catalysts were exposed to NO2. 

While nitrites were observed, storage occurred mainly as nitrates on Al2O3 or BaO.  For 

Al2O3 and Pt/Al2O3, bands at 1600 – 1500 and 1300 – 1200 cm
-1

 were assigned to bridged 

bidentate nitrates, monodentate or chelating bidentate nitrates on Al2O3.  For Ba/Al2O3 and 

Pt/Ba/Al2O3, bands at 1552, 1420 and 1310 cm
-1

 were assigned to bridging nitrates on Ba and 

ionic nitrates on Ba, respectively.  It is worth noting that adsorption of NO2 was qualitatively 

very similar to adsorption of NO + O2, but yielded higher intensity bands at equivalent storage 

times, which was expected since the Pt/BaO interface was no longer important.  Additionally, 

since nitrites were observed during exposure of NO2, a mechanism involving a nitrite to nitrate 

route could not be excluded even though NO2 was used as the NOX source. 
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Figure A5. Adsorption of 1000 ppm NO2 in He at RT on (A) Al2O3, (B) Pt/Al2O3, (C) Ba/Al2O3, 

(D) Pt/Ba/Al2O3.  Spectra shown after 0, 0.5, 1, 2, 3, 5, 10 & 20 min., respectively. 

 

  

  
Figure A6. Adsorption of 1000 ppm NO2 in He at 350 °C on (A) Al2O3, (B) Pt/Al2O3, (C) 

Ba/Al2O3, (D) Pt/Ba/Al2O3.  Spectra shown after 0, 0.5, 1, 2, 3, 5, 10 & 20 min., respectively. 
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CO 

Exposure of pre-oxidized samples to CO was performed because nitrates/nitrites absorb 

infrared light in the same region as carbonates, carboxylates and formates and band assignments 

can be even more difficult when carbon containing species were present in the gas mixtures. 

  Exposure of Al2O3 and Pt/Al2O3 to 1000 ppm CO in He at RT resulted in formation of 

low intensity bands at 2092, 1653, 1470, 1436, 1266 and 1230 cm
-1

 (Figs. A7 and A8).  The band 

at 2092 cm
-1

 was assigned to a CO carbonyl on Pt.  Bands at 1653, 1470, 1436, 1266 and 1230 

cm
-1

 were most likely associated with bidentate carbonates and unidentate carbonates [37,179].  

Detailed bands assignments were not attempted since the bands were insignificant at 350 °C, a 

relevant storage temperature.  Exposure of Ba/Al2O3 and Pt/Ba/Al2O3 to 1000 ppm CO at RT 

resulted in formation of bands at 2087, 1656, 1567, 1379, 1321 and 1230 cm
-1

, which could 

similarly be assigned to Pt carbonyls and bidentate carbonates and unidentate carbonates 

respectively.   

Exposure of Al2O3 and Pt/Al2O3 to 1000 ppm CO at 350 °C resulted in formation of low 

intensity bands at 1585, 1515, 1521, 1441, 1392 and 1296 cm
-1 

and were assigned to weakly 

bound carbonate species on Al2O3 (Fig. A8).  Notice that storage of CO occurred negligibly at 

350 °C on Al2O3.  These results were in agreement with storage of 1000 ppm NO, in absence of 

O2, at 350 °C (Fig. A2).  The more intense band at 2049 cm
-1

 was assigned to linearly bound CO 

carbonyl on reduced Pt. 

Exposure of Ba/Al2O3 and Pt/Ba/Al2O3 to 1000 ppm CO resulted in formation of much 

more intense bands at 1570 and 1335 cm
-1

, which were assigned to bidentate carbonates 

[37,179].  A band at 1450 cm
-1

 was not observed in the absence of H2O and O2, where the band 

at 1450 cm
-1 

was previously assigned to bulk BaCO3.  This indicated that under the conditions of 
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the experiment only surface carbonates were formed.  Formation of a band at 1450 cm
-1

 would 

likely indicate deterioration of NSR ability since bulk-like BaCO3 is highly stable and is believed 

to be inactive for NOX storage.  The band at 2016 cm
-1

 was assigned to a carbonyl on Pt and 

bands at 2230 and 2162 cm
-1

 were assigned to isocyanate species bound to Al2O3 and BaO, 

respectively [24].  The formation of NCO species even in the absence of NOX indicated that the 

Ba storage component contained some residual NOX stored on the surface even though a high-

temperature reduction using H2 was performed. 

  

  
Figure A7. Adsorption of 1000 ppm CO in He at RT on (A) Al2O3, (B) Pt/Al2O3, (C) Ba/Al2O3, 

(D) Pt/Ba/Al2O3.  Spectra shown after 0, 0.5, 1, 2, 3, 5, 10 & 20 min., respectively. 
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Figure A8. Adsorption of 1000 ppm CO in He at 350 °C on (A) Al2O3, (B) Pt/Al2O3, (C) 

Ba/Al2O3, (D) Pt/Ba/Al2O3.  Spectra shown after 0, 0.5, 1, 2, 3, 5, 10 & 20 min., respectively. 
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PT/AL2O3 

In situ cycling using H2 as a reductant on a Pt/Al2O3 catalyst yielded bands at 1551, 1295 

and 1241 cm
-1 

during the first lean period, as shown in Fig. A9.  These bands were previously 

assigned to bridging or chelating bidentate nitrates on Al2O3 and they continued to grow in 

intensity for the duration of the lean period.  Removal of NO and O2 during the subsequent He 

flush destabilized these species and  a slow decrease in intensity of the 1551, 1296 and 1241 cm
-1

 

bands was observed.  Notice the clear maximum obtained for the 1551 cm
-1 

band in Fig. A9.  

Introduction of 9000 ppm H2 during the rich periods caused rapid removal of the nitrate bands, 

where spectra collected during rich periods were nearly flat.  This indicated that the reduction 

period effectively returned the catalyst to its clean “pre-cycled” state.  Since effluent gases from 

the IR cell were not analyzed, it was not possible to determine if the species were reacting on the 

surface or merely desorbing into the gas phase, but Fridell et al. [62] performed similar 

experiments over a Pt-Rh/Al2O3 catalyst and complete reduction of NOX was observed during 

rich periods.   

Similarly, cycling using CO and C3H6 as reductants on a Pt/Al2O3 catalyst yielded bands 

assigned to bridging or chelating bidentate nitrates on Al2O3 during the first storage period, as 

shown in Figs. A10 and A11.  However when CO or C3H6 were used as reductants, bands in the 

region of 1600 – 1200 cm
-1

 appeared.  These bands were previously assigned to carbonates on 

Al2O3.  Careful inspection of the spectra collected during reduction demonstrated that nitrate 

species were either reacting or desorbing while COX type species were adsorbing on the Al2O3.  

The nitrate feature at 1551 cm
-1

 decreased in intensity while a band assigned to a broad COX 

peak appeared in the 1650 – 1360 cm
-1

 region and grew in intensity.  Similarly, the nitrate bands 
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at 1295 and 1241 cm
-1

 decreased in intensity, while a COX band appeared at 1285 cm
-1

 and grew 

in intensity. 

Reduction by CO also resulted in formation of intense bands at 2230 and 2041 cm
-1

.  The 

band at 2230 cm
-1

 was assigned to an isocyanate (NCO) on Al2O3 and the band at 2041 cm
-1

 was 

assigned to a CO-carbonyl on Pt.  Cycling using C3H6 as the reductant also resulted in formation 

of a band around 2020 cm
-1

.  The nature of this band appeared to be quite complex and might 

involve transience of the oxidation state of Pt or an adsorbed COX type species on Pt.  Initially 

this band was centered at 2028 cm
-1

 with a shoulder at 2090 cm
-1

.  Increased time of exposure 

caused the band to grow in intensity and shift to 2022 cm
-1

.  Further exposure resulted in 

decreased intensity and a shift to 2005 cm
-1,

 then 1993 cm
-1

.  The shoulder at 2090 cm
-1

 was 

always observed.  The mobility and intensity of this peak has not been discussed in the literature 

and was only observed for Pt/Al2O3 and it is not clear if multiple species are responsible for this 

behavior.  A more detailed investigation regarding this phenomenon was not conducted, as it was 

not immediately relevant to NSR catalysts. 

In summary, Pt/Al2O3 catalysts exhibited minor storage of NOX as nitrates on Al2O3 

during lean periods and the stored nitrates demonstrated limited stability in He at 350 °C.   

Removal of nitrates during rich periods occurred rapidly for H2, CO and C3H6 and resulted in 

formation of COX type adspecies when CO and C3H6 were used as reductants. 
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Figure A9.  In situ cycling over Pt/Al2O3 at 350 °C using 9000 ppm H2 as the reductant. 

 

 

 
Figure A10. In situ cycling over Pt/Al2O3 at 350 °C using 9000 ppm CO as the reductant. 
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Figure A11. In situ cycling over Pt/Al2O3 at 350 °C using 1000 ppm C3H6 as the reductant. 

 

BA/AL2O3 

In situ cycling using H2 as the reductant on a Ba/Al2O3 catalyst yielded a band at 1206 

cm
-1

 during the first lean period, which was previously assigned to bridging bidentate nitrite on 

Ba (Fig. A12).  The intensity of this band remained constant during the subsequent He flush, 

which demonstrated the increased stability of nitrites formed on Ba in comparison 

nitrates/nitrites formed on Al2O3.  Interestingly, exposure of the nitrated Ba/Al2O3 catalyst to 

9000 ppm of H2 did not result in removal of the stored NOX species.  Instead, the band at 1206 

cm
-1

 continued to grow slowly during each subsequent lean period throughout the experiment.  

This implied that Ba/Al2O3 was inactive during reduction.  Fig. A12(B) more clearly 

demonstrates this concept, where the band at 1206 cm
-1

 remained stable even after exposure to 

H2 for 2 min.  For Pt/Al2O3, the nitrate bands were removed completely during rich periods.  

In situ cycling using CO and C3H6 as the reductants yielded similar results to cycling 

using H2, where nitrites were initially formed and stable in He.  However, exposure to CO or 
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C3H6 resulted in the formation of carbonates, as shown in Figs A13 and A14. Notice how the 

bands at 1560 and 1350 or 1335 cm
-1

 grew rapidly during the first rich period.  During the 

following lean period, COX adspecies were desorbed in favor of nitrite formation.  This type of 

behavior was expected since both NOX and COX are acidic species and compete for the same 

adsorption sites on the basic BaO.  Fridell et al. [41]  previously demonstrated the poor storage 

and reduction properties of Ba/Al2O3 catalysts, where transient reactor measurements 

demonstrated insignificant storage and conversion of NOX to N2.  Nova et al. [63] observed 

conversion of NOX using NH3 as the reductant for a Ba/Al2O3 catalyst beginning at 320 °C.  

Conversion of NO on a Pt/Ba/Al2O3 began around 100 °C when NH3 was used a reductant and 

around 60 °C when H2 was used as reductant.  The considerably lower NOX conversion 

temperature demonstrated the advantage of adding Pt to Ba/Al2O3.   

Fig. A13 appears to demonstrate higher stability of nitrites in comparison to carbonates, 

where bands 1562 and 1338 cm
-1

 decreased when CO was removed during lean periods, but the 

nitrite bands at 1210 cm
-1 

appeared to grow with each lean period, as observed for H2 cycling.  

Weak bands at 2224 and 2164 cm
-1

 were also observed, as seen in Fig. A13(B).  These bands 

were assigned to NCO species on Al2O3 and Ba, respectively [24]. Formation of isocyanates in 

the absence of Pt was unexpected because these species have been reported to form only on the 

surface of precious metals [403].  So, the presence of NCO species indirectly implied that 

minimal reduction was occurring even in the absence of Pt.   

 Figure A14 demonstrates that when C3H6 was used, lower intensities of COX adspecies 

were formed.  Additionally, no isocyanate species were observed.  These results implied that 

C3H6 was less effective than CO, which was in agreement with results reported by other groups 

[27]. 
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Figure A12.  In situ cycling on Ba/Al2O3 at 350 °C using 9000 ppm H2 as the reductant. (A) The 

3D representation showing all 56 spectra collected during the cycling experiment and (B) 

Depicts spectra collected during the 2
nd

 rich period. 
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Figure A13.  In situ cycling on Ba/Al2O3 at 350 °C using 9000 ppm CO as the reductant. (A) 

The 3D representation showing all 56 spectra collected during the cycling experiment and (B) 

Depicts spectra collected during the 2
nd

 rich period. 
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Figure A14.  In situ cycling on Ba/Al2O3 at 350 °C using 1000 ppm C3H6 as the reductant. (A) 

The 3D representation showing all 56 spectra collected during the cycling experiment and (B) 

Depicts spectra collected during the 2
nd

 rich period. 
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PT/BA/AL2O3 

In situ cycling over Pt/Ba/Al2O3 catalyst resulted in 3 distinct regions in the FTIR spectra, 

as shown in Fig. A15. During the first lean period, bands at 1420 and 1310 cm
-1 

formed and grew 

rapidly.  These bands were previously assigned to ionic nitrates on Ba and were stable in He at 

350 °C.  Admission of H2 to IR cell resulted in rapid removal of these nitrate species.  Fig. A15 

(B) demonstrates the reduction process for H2, where nitrates were completely removed after 80 

s in H2.  The negative bands at 1526 and 1370 cm
-1

 were difficult to assign.  They could 

represent decomposition of BaCO3, but previous CO + O2 adsorption experiments (omitted for 

brevity) yielded bands at 1570 and 1335 cm
-1

.  Another possibility could be partial reduction of 

the BaO surface.  Roedel et al. [404] demonstrated that BaO exhibits bands at 1693, 1467 and 

1370 cm
-1

 if studied by DRIFTS and bands at 1641 and 1433 cm
-1 

if studied by transmission IR.  

Later cycling experiments (Fig. A16 and A17) exhibited bands at 1562 and 1350 cm
-1

 for 

reduction of NOX by CO and bands at 1556 and 1367 cm
-1

 for reduction of NOX by C3H6.   

While some aspects remain unclear, the synergistic effect of incorporating both a 

precious metal and storage component was clear.  The cycling experiments on Pt/Al2O3 showed 

poor storage, but implied complete reduction.  The cycling experiments on Ba/Al2O3 showed 

both poor storage and poor reduction.  Combining Pt and Ba on Al2O3 demonstrated much higher 

storage capacity and implied complete reduction during rich periods.  Since operando methods 

were not employed, it was not possible to determine the cycle averaged NOX conversion or 

selectivity to N2, but effective removal of nitrates during rich periods at 350 °C was clearly 

established. 

 In situ cycling using CO as the reductant yielded a more complex picture than cycling in 

H2, as seen in Figure A16.  This was due to simultaneous formation of COX adspecies as nitrates 
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were removed/reduced.  Interestingly, the bidentate carbonates formed during reduction were 

more completely removed in subsequent lean periods over Pt/Ba/Al2O3 catalysts than Ba/Al2O3 

catalysts.  Careful examination of the bands at 1565 and 1310 cm
-1 

demonstrates this 

phenomenon, where the band at 1565 corresponds to COX adspecies and the band at 1310 

represents ionic nitrates. 

  The second major difference between cycling in H2 and cycling in CO was the formation 

of intense bands at 2220 and 2162 cm
-1

.  These bands were previously assigned to isocyanate 

species on Al2O3 and Ba, respectively.  The presence of these bands and their intensity has led 

many groups to the conclusion that isocyanate species are intermediates in the reduction on 

nitrates to N2 [16,24,27,64,289,290].  While this is one possibility, researchers investigating NOX 

reduction mechanisms on three-way catalysts concluded that reaction through isocyanate 

intermediates only accounted for 5% of the total NOX conversion observed [2].  However, the 

conditions and catalysts used for NSR applications are different than those used for TWCs and 

general conclusions made for these systems do not necessarily extend to NSR catalysts.  Fig. 

A16 (B) depicts the 2
nd

 reduction period, where nitrates were removed/reduced and 

carbonates/formates and isocyanate species formed.  A band at 2020 cm
-1

 also appeared and was 

assigned to a CO carbonyl on Pt.  The isocyanate species and carbonyls were removed almost 

immediately in subsequent lean periods. 

Fig. A17 demonstrates in situ cycling when C3H6 was used as the reductant. The results 

were very similar to cycling in CO, but less carbonate/formate species were formed and lower 

concentrations of isocyanate species were observed.  In fact, the band at 2220 was no longer 

observed.   
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Figure A15. In situ cycling on Pt/Ba/Al2O3 at 350 °C using 9000 ppm H2 as the reductant. (A) 

The 3D representation showing all 56 spectra collected during the cycling experiment and (B) 

Depicts spectra collected during the 2
nd

 rich period. 
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Figure A16. In situ cycling on Pt/Ba/Al2O3 at 350 °C using 9000 ppm CO as the reductant. (A) 

The 3D representation showing all 56 spectra collected during the cycling experiment and (B) 

Depicts spectra collected during the 2
nd

 rich period. 
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Figure A17. In situ cycling on Pt/Ba/Al2O3 at 350 °C using 1000 ppm C3H6 as the reductant. (A) 

The 3D representation showing all 56 spectra collected during the cycling experiment and (B) 

Depicts spectra collected during the 2
nd

 rich period. 
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A.1.4 CONCLUSIONS 

Exposure of pre-oxidized Al2O3, Pt/Al2O3, Ba/Al2O3 and Pt/Ba/Al2O3 to NO, NO + O2 or 

NO2 at RT or 350 °C resulted in formation of nitrites and/or nitrates for all catalysts investigated.  

The relative concentration between nitrates and nitrites, the total concentration of NOX adspecies 

and the coordination of NOX to Al2O3 or Ba was dependent on the storage temperature, the NOX 

source (e.g. NO, NO2 or NO + O2), addition of Pt to Al2O3, addition of Ba to Al2O3,  and 

addition of Pt and Ba to Al2O3.  Storage of NO + O2 at 350 °C on the Pt/Ba/Al2O3 catalyst 

occurred as ionic nitrates on Ba, with bands at 1420 and 1310 cm
-1

, and as a bridging nitrate on 

Ba with a band around 1560 cm
-1

.  At short times, a bridging nitrite coordinated to Ba was 

observed for the Pt/Ba/Al2O3 catalyst, where Pt catalyzed conversion from nitrites to nitrates.  In 

the absence of O2, storage as nitrates was observed for the Pt/Ba/Al2O3 catalyst at 350 °C, but the 

transition from storage as nitrites to storage as nitrates occurred at longer times.  O2 increased 

storage capacity and facilitated conversion from nitrites to nitrates.  Similarly, exposure of pre-

oxidized Al2O3, Pt/Al2O3, Ba/Al2O3 and Pt/Ba/Al2O3 to CO at RT and 350 °C resulted in 

formation of COX adspecies for all catalysts investigated.  Exposure of the Pt/Ba/Al2O3 catalyst 

to CO at 350 resulted in formation of bidentate carbonates with bands at 1560 and 1335 cm
-1

.  

Storage experiments of both NOX and COX demonstrated numerous bands, where overlap 

between bands corresponding to NOX species on Al2O3 and Ba and COX species on Al2O3 and 

Ba greatly complicated definitive band assignments. 

In situ cycling at 350 °C on Pt/Al2O3, Ba/Al2O3 and Pt/Ba/Al2O3 catalysts clearly 

demonstrated the synergistic effect of adding both Pt and Ba to NSR catalysts.  Cycling on 

Pt/Al2O3 yielded low storage of NOX and the nitrites/nitrates exhibited poor thermal stability.  

However, complete removal of nitrite/nitrate features was observed during rich phases when 
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employing H2, CO or C3H6 as the reductant.  Cycling on Ba/Al2O3 also yielded low storage, but 

the nitrites/nitrates were thermally stable.  However, insignificant removal of stored 

nitrites/nitrates was observed during rich periods.  Cycling on Pt/Ba/Al2O3 yielded appreciable 

storage of NOX, high thermal stability of the nitrates/nitrites and rapid removal of nitrates/nitrites 

during reduction.  Comparison of the cycling results on Pt/Al2O3, Ba/Al2O3 and Pt/Ba/Al2O3 led 

to the conclusion that Ba provided high storage capacity of NOX as thermally stable 

nitrites/nitrates and Pt catalyzed both the storage and reduction period, where poor activity of the 

Ba/Al2O3 catalysts inferred precious metals to be an integral component of NSR catalysts.  

Reduction of stored nitrites/nitrates using CO and C3H6 led to the formation of isocyanate 

species, especially for Pt/Al2O3 and Pt/Ba/Al2O3. This again inferred Pt to play an influential role 

during reduction, as discussed at length in Chapter 2. 
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A.2 REVIEW: THE ROLE OF ISOCYANATE (NCO) INTERMEDIATES IN THE REDUCTION OF 

NOX BY CO 

 

A.2.1 PREFACE 

Recently, there has been considerable interest regarding NOX reduction mechanisms 

occurring on noble metal supported lean NOX traps (LNT) or NOX storage and reduction (NSR) 

catalysts.  It is generally accepted that storage on these catalysts is preceded by oxidation of NO 

to NO2 on metal sites, followed by spillover and storage on BaO/BaCO3.  However, much less is 

known about the reduction mechanism.  The generally accepted mechanism for reduction by H2 

proceeds through an NH3 intermediate, where NH3 is ultimately responsible for the reduction of 

stored NOX.  Similarly, the mechanism for reduction by CO and hydrocarbons (HCs) reportedly 

proceeds through an isocyanate intermediate, which can be oxidized to N2 and CO2 or undergo 

hydrolysis to produce NH3.  The NH3 could then further react, as observed for H2, and ultimately 

form N2.  While this mechanism for CO and HCs seems reasonable, considerable skepticism has 

been expressed in past regarding this route.  This review summarizes the current mechanisms 

proposed for reduction of NOX over NSR catalysts when CO and C3H6 are used as reductants and 

discusses why isocyanate intermediates could potentially play more of a role than previously 

reported for other lean NOX reduction catalysts. 

A.2.2  REDUCTION OF NOX BY CO AND HCS ON NSR CATALYSTS 

 Investigation of the rich period occurring on NSR catalysts is an inherently 

difficult process.  Firstly, the reduction period is very short, which makes it very difficult to 

obtain accurate information regarding the state of catalytic sites during operation and in situ or 



www.manaraa.com

 

244 
 

operando techniques with good temporal resolution are required.  For example, understanding 

how the oxidation state of the metal changes during reduction may infer some mechanisms to be 

more likely than others, but collection of in situ XPS data during reaction may not be feasible 

due to the small time increments required.  XPS spectra could be obtained by briefly exposing 

the catalyst to pulses of reductant, followed by subsequent evacuation and scanning, but it is 

unclear how this process would affect the surface chemistry and stability of species observed at 

ambient pressures.  Experiments of this nature would be of great importance though because 

NOX slip, an undesirable process describing the release of NOX that exits the catalytic converter 

before reduction can occur, has been attributed to the inability of oxidized precious metals to 

reduce NOX [38,72].  Olsson and Fridell [56] reported formation of Pt oxides on Pt/Al2O3 and 

Pt/Ba/Al2O3 catalysts after exposure to NO + O2.   Higher amounts of Pt oxides were formed on 

Pt/Ba/Al2O3 catalysts, which the authors attributed to the basic nature of BaO.  So, if Pt 

supported on Ba/Al2O3 is especially susceptible to oxide formation and reduction of NOX on 

oxidized Pt is slow or negligible, the length of the reduction period becomes very important 

because short reduction periods (≈1 -2 s) may be dominated by a metallic state not favorable for 

NOX reduction. 

 Second, and more importantly, there are two processes occurring simultaneously during 

reduction that affect the net behavior observed.  They include: 1.) release of NOX from the 

storage sites and 2.) reduction of the released NOX to N2.  Unfortunately, it is not possible to 

study these separately, which drastically complicates efforts in understanding the reduction 

mechanisms occurring on NOX storage catalysts.  Figure A18 is a general overview of the 

reduction of stored NOX by CO and C3H6.  Both the water gas shift (WGS) reaction and NH3 
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formation were excluded for clarity.  NH

water, as discussed in the following sections

FigureA18. Overview of NOX reduction (t=0 + 

period has ended (t=0).  This figure is intended for clarification purposes only and should not be 

referenced as an actual representation of the real processes occurring during operation.  These 

subtleties are still unclear and are the topic of this paper. 

intermediate was excluded for clarity.

 

A.2.3 RELEASE MECHANISMS 

Understanding the release mechanism of stored NO

chemical nature of the NOX that interacts with the reductants (i.e.

reduction actually initiates (i.e. on the surface of the support, storage material or metal).  Several 

possibilities have emerged in the literature and include: 1.) thermal release 

from oxidation of reductants during the switch from lean to rich conditions, 2.) destabilization of 
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rity.  NH3 is also a possible product, especially in the presence of 

iscussed in the following sections [290].  

reduction (t=0 + ∆) on a Pt/Ba/Al2O3 catalyst after the storage 

period has ended (t=0).  This figure is intended for clarification purposes only and should not be 

referenced as an actual representation of the real processes occurring during operation.  These 

ll unclear and are the topic of this paper. Note: The role of NH3 

intermediate was excluded for clarity. 

Understanding the release mechanism of stored NOX is critical because it determines the 

that interacts with the reductants (i.e., NO vs. NO

reduction actually initiates (i.e. on the surface of the support, storage material or metal).  Several 

possibilities have emerged in the literature and include: 1.) thermal release due to heat evolved 

from oxidation of reductants during the switch from lean to rich conditions, 2.) destabilization of 

, especially in the presence of 

 
catalyst after the storage 

period has ended (t=0).  This figure is intended for clarification purposes only and should not be 

referenced as an actual representation of the real processes occurring during operation.  These 

 as a product and 

is critical because it determines the 

NO vs. NO2) and where the 

reduction actually initiates (i.e. on the surface of the support, storage material or metal).  Several 

due to heat evolved 

from oxidation of reductants during the switch from lean to rich conditions, 2.) destabilization of 
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stored NOX due to removal of O2 from the feed, 3.) destabilization of stored NOX due to 

establishment of a net reducing environment, 4.) spillover of NO2 from BaO to Pt and subsequent 

reduction, 5.) competition between NO2, CO2 and H2O for the same storage sites, and lastly 6.) 

direct reaction of NOX with the reductant on the surface of the storage component [59–61].   

Kabin et al. [61] demonstrated that a significant exotherm can be generated by 

introduction of the reductant to lean exhausts.  Although the authors were attempting to perform 

the experiment at 300 °C, the heat generated during oxidation of the reductant increased the 

average temperature to over 350 °C, with sharp spikes up to approximately 500 °C when the 

reductant was introduced, as shown in Figure A19. 

 

Figure A19. Temperature profile of the catalyst bed during 60 s lean, 10 s rich periods over 

2.2%Pt/16.3%BaO/Al2O3 (w/w), where lean: 500 ppm NO, 5% O2, 1000 ppm C3H6 and rich: 500 

ppm NO, 5% O2, 1.4% C3H6.  Reprinted from Kabin et al., 2004 [18]. 

 Additionally, Scotti et al. [405] performed temperature programmed desorption 

(TPD) of NO2 stored at 350 °C, a relevant storage temperature, and determined that thermal 

evolution of NO2 reached a maximum around 460 °C and thermal evolution of NO reached a 

maximum around 550 °C on Ba/Al2O3, as shown in Fig. A20.  NO2-TPD performed on 

Pt/Ba/Al2O3 catalyst resulted in the release of mainly NO at temperatures slightly lower than 460 

°C, where evolution as NO instead of NO2 for Pt containing samples was explained by reduction 
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of NO2 to NO over Pt.  A decrease in the thermal stability of Ba nitrates due to addition of 

precious metals was also reported by Prinetto et al. [34]. 

 

Figure A20. TPD profiles of (A) 20%Ba/Al2O3 (w/w) and (B) 1%Pt/20%Ba/Al2O3 (w/w) after 

exposure to 1000 ppm NO2 in He at 350 °C, Scotti et al. [405]. 

 Since Kabin et al. [61] routinely observed temperatures above 500 °C for cycling and 

Scotti et al. [405] reported that thermal evolution began below 500 °C, one could argue that 

thermal evolution of NOX from Ba is a reasonable release mechanism.  However, Nova et al. 

tested the validity of a thermal release mechanism by performing temperature programmed 

surface reaction (TPSR) measurements on Ba/Al2O3 and Pt/Ba/Al2O3 (20/100 and 1/20/100 w/w, 

respectively) catalysts under near-isothermal conditions [60].  Both catalysts were saturated 

using NO + O2 or NO2 mixtures at 350 °C, flushed with He, cooled to room temperature, and 

then ramped at 15 °C/min in 2000 ppm H2.  If thermal evolution of NOX was crucial for 

reduction to occur, reaction of the stored nitrates would not be expected to begin until 

approximately 350 °C.  This was indeed the case for Ba/Al2O3, as consumption of hydrogen did 

not begin until approximately 350 °C.  As a side note, establishment a net reducing environment 

(A) 

(B) 
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did not seem to dramatically change the thermal stability of the stored nitrates (≈ a 20 °C shift to 

lower temperatures).  However, it did affect the product distribution, most likely through 

Reactions A1 and A2.  Ba/Al2O3 unexpectedly catalyzed this reaction, but it was unclear how.  

In the absence of a catalyst, consumption of H2 in NO2 (g) was not observed even when the 

temperature was increased to 500 °C.  The authors speculated that stored NOX may have played 

a role.   

��� + 3� → 	�� +	3�� (A1) 

�� +3� →	
1

2
�� +	3�� 

(A2) 

 Alternatively, consumption of hydrogen during H2-TPSR on the Pt/Ba/Al2O3 sample 

began at 150 °C, which was significantly lower than the temperature required for thermal release.  

Several mechanisms were proposed that could explain this behavior including: 1.) adsorption and 

activation of hydrogen on metal sites, where hydrogen could then spill over onto to the support 

and destabilize stored NOX, 2.) direct reduction of NOX by activated hydrogen on the support, or 

lastly, 3.) NO2 released from the storage component could diffuse to the metal, where reduction 

by hydrogen could occur.  The role of the reactions occurring directly on the support is unclear, 

but Forzatti et al. [290] observed formation of weak bands assigned to isocyanates adsorbed Ba 

and Al on a Ba/Al2O3 catalysts, which essentially proved that reaction on the support was 

possible even without the presence of a precious metal to activate reductants.  Figure A21 depicts 

the dramatic changes observed between H2-TPSR on Ba/Al2O3 and Pt/Ba/Al2O3 catalysts.  
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Figure A21. TPSR profiles of (A) 20%Ba/Al2O3 (w/w) and (B) 1%Pt/20%Ba/Al2O3 (w/w) after 

exposure to NOX in He at 350 °C, cooled to RT, and then ramped at 15 °C/min in 2000 ppm H2, 

Nova et al. [60]. 

 The first two release mechanisms proposed by Nova et al. [60] are easily visualized, 

while the latter is harder to grasp.  Liu and Anderson [59] explained this mechanism more clearly 

and argued that the release of NOX was based on the law of microreversibility.  In other words, 

equilibrium is established between the NOX stored on the Ba at the Pt/Ba interface.  When 

hydrogen is introduced, it reacts with the NOX on Pt, which then desorbs and essentially opens 

the gate and allows more NOX to pour onto the Pt surface where it can react with additional 

hydrogen.  This process would continue until the supply of hydrogen was exhausted or all the 

NOX stored on the surface was consumed. 

 NOX release due to removal of oxygen from the gas phase was also suggested as a release 

mechanism, according to Reactions 3 and 4 [59].  However, this is very unlikely since NOX 

species adsorbed on the surface survived evacuation even at 500 °C [34].  Su and Amiridis [22] 

reported similar results regarding the stability of stored nitrite/nitrate species in He at 350 °C.   

����
�
�⇔	��� +	

1

2
�� + 2��� 

(A3) 

(A) (B) 
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(A4) 

 

The last NOX release mechanism worth mentioning involves competitive adsorption 

between CO2, NO2, H2O and SO2.  Generally, BaSO4 >> BaCO3 ≥ Ba(NO3)2 in terms of  

thermodynamic stability [44,105].  Therefore, if Ba(NO3)2 was exposed to CO2 in the absence of 

NOX, you would expect exchange between Ba(NO3)2 in favor of BaCO3 and the rate of exchange 

would depend on the concentration of CO2 and the temperature.  Similarly if BaCO3 was exposed 

to NOX in the absence of CO2, you would expect to exchange BaCO3 for Ba(NO3)2.  In reality, 

this is exactly what you observe experimentally and this type of methodology is used to remove 

bulk-like BaCO3 from samples for FTIR measurements because BaCO3 strongly absorbs infrared 

light at 1450 cm
-1

 [179,290].  SO2, on the other hand, essentially irreversibly binds to BaO under 

the temperatures and conditions present during typical NSR operation.  This leads to deactivation 

of the catalyst, where the degree of deactivation was observed to be directly proportional to the 

amount sulfur to which the catalyst has been exposed and harsh regeneration treatments must by 

employed to recover activity [105,197].  While competitive adsorption is almost certainly 

occurring, it is probably not the most dominant release mechanism for stored NOX.  Instead, it is 

more likely that the working capacity (defined here as the total number of sites available for NOX 

storage) of the catalyst decreases, which impairs performance as observed by Epling et al. [181] 

when CO2 and water were included in the reaction mixture. 

In conclusion, the most likely mechanisms for release of NOX are as follows: (1) 

adsorption and activation of reductant molecules on metal sites, which then spill over onto to the 

support and destabilize stored NOX, 2.) direct reduction of NOX on the support by activated 

reductant molecules and lastly, 3.) spillover of NO2 from BaO to Pt, according to the law of 
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microreversibility, and subsequent reduction on precious metal sites.  Thermal release due to 

heat evolved during oxidation of reductants and competitive adsorption of CO2 could aid in the 

release of NOX, but these mechanisms are not expected to be the driving force behind the release 

of stored NOX.  Release due to removal of O2 or NO from the feed are expected to contribute 

very little (or not at all) to the total amount of NOX released during storage. 

A.2.4 REDUCTION MECHANISMS 

A considerable amount of effort was donated to the mechanism of NOX release because 

the NOX reduction mechanism is intimately tied to NOX release.  For example, a reduction 

mechanism that proceeds through a reductant that is activated over a precious metal that 

subsequently spills onto the support and reacts with stored NOX is much different than a 

reduction mechanism that proceeds through NO2 migration from the storage sites to the metal 

and subsequent reduction over the metal.  While the differences between these two processes 

seems obscure, elucidation of the release and reduction mechanism will not only provide 

fundamental understanding of the chemistry occurring on these materials; it will allow 

researchers to target specific areas for improvement during systematic design of new catalysts 

better suited to carry out this chemistry (i.e. stabilization of activated hydrocarbon adspecies on 

the support may facilitate reduction if the process mainly proceeds though reactions taking place 

on the support).  The following sections focus on NOX reduction mechanisms for deNOX 

catalysts and NSR catalysts. 

A.2.4.1 REDUCTION MECHANISMS ON DE-NOX  CATALYSTS 

Removal of NOX from both stationary and mobile sources has generated an immense 

amount of research activity because NOX release can lead to acid rain, smog, and destruction of 
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ozone layer [1–3,5,7].  Therefore, regulations were introduced to control the release of NOX into 

the environment and a vast array of catalysts have been proposed and tested for activity in the 

reduction of NOX under an assortment of operating conditions including: NH3-SCR on base 

oxides (e.g. V2O5 and Cr2O3), NH3-SCR on metal zeolites (e.g. Cu-ZSM5), HC-SCR on precious 

metals and zeolites (e.g. Ag/Al2O3, Pt/Al2O3, Cu-ZSM5), reduction of NO in the presence of H2, 

CO or HCs (TWCs) on supported metals (e.g. Cu2O/Al2O3, Pt/Al2O3, Pd/Al2O3, Rh/Al2O3, 

Ir/Al2O3  and Ru/Al2O3) and lastly, direct decomposition of NO (e.g. Cu-Zeolites) [1–3,5,7].  

This section briefly highlights mechanistic details for reduction of NOX by CO and HCs 

on the catalysts relevant to this review.  Many details were omitted for brevity since a complete 

review of all deNOX catalysts is out of the scope of this paper.   

REDUCTION MECHANISMS OCCURRING ON HC-SCR CATALYSTS 

Reaction 5 describes the desirable reaction products after a lean NOX mixture has been 

treated using a HC-SCR catalyst, where zeolite based, non-zeolitic oxide-based  and noble metal 

based catalysts have all been investigated for their potential use in this application [2,3,5].   

��	�	
 +	���	
 + 	3(
1'�,'M	'FWF-X�W
YZZZZZZZZZZZ[ �� + (�� + 3��	 (5) 

Zeolite based catalysts are generally composed of Cu supported/exchanged on mordenite 

or ZSM5 and can only achieve high activity (conversion of 66%) in a narrow temperature range 

(150-230 °C) and are highly susceptible to deactivation by water [3].  Therefore, application in 

automotive exhaust systems is unlikely and these catalysts will not be discussed further. 

Non-zeolitic oxide-based catalysts are generally composed of Co, Ni, Cu, Fe, Sn, Ga, In, 

or Ag supported on Al2O3, TiO2, ZrO2 or MgO [5].  Of these, Ag/Al2O3 has generated the most 
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interest because it offers the highest activity and selectivity [5].  While the reduction mechanism 

occurring on these catalysts is still unclear, several observations have been reached regarding the 

activity of these materials and include: 1.) The ability of the material to form adsorbed NOX 

species, which is most likely preceded by oxidation of NO to NO2 and subsequent spillover, 2.) 

The ability of the material to form partially oxidized hydrocarbon adspecies, and 3.) The ability 

of adsorbed NOX and hydrocarbon species to react with one another to form organo-nitrogen 

intermediates, where decomposition leads to cyanides, isocyanates, NH3 and activated NH3 (-

NH2), which can then further react with other adsorbed NOX species, or gas phase NO [3,5].  

When NO2 was used instead of NO as the NOX source, the rate increased and implied that NO2 

may play a critical role in the overall mechanism.  Additionally, reaction of NOX with oxygen 

containing HC species (e.g. alcohols instead of propylene) increased the rate, which suggested 

that adsorbed, partially oxidized hydrocarbon intermediates may also be an important 

intermediate.  Lastly, isocyanate and cyanide species were observed spectroscopically, which 

supported their role as intermediates.  Fig. A22 summarizes this mechanistic scheme.  Thibault-

Starzyk et al. [304] also recently reported that the transition from a cyanide to isocyanate 

intermediate was an integral step in this reduction mechanism [26].  Fig. A23 summarizes the 

updated mechanism based on their results. 
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Figure A22. Possible reaction scheme of HC-SCR of NO occurring on Ag/Al2O3 catalysts, 

Burch et al. [5]. 

 

 

 

Figure A23.  Updated HC-SCR of NO reaction mechanism occurring on Ag/Al2O3 when CO 

was used as the reductant molecule, Thibault-Starzyk et al., 2009 [26]. 
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Noble metal based catalysts were also investigated for activity in the HC-SCR reaction, 

where Ir and Pt supported catalysts seemed to be most active [2,3,5]. Three possible NOX 

reduction mechanisms emerged for noble metal based HC-SCR catalysts including: 1.) a 

reduction of NOX mainly through formation of cyanides or isocyanates, 2.) reduction through the 

formation of organo-nitrogen intermediates, or 3.) reduction through decomposition of NO on 

the surface of precious metals.   

As opposed to previous investigations on Ag/Al2O3 catalysts, researchers have been 

much more reticent to propose that the main route for NOX reduction on Pt/Al2O3 catalysts 

proceeds through cyanide, isocyanate or organo-nitrogen intermediates and controversy on the 

importance of these mechanisms persists.  Both of these routes were proposed based on species 

observed spectroscopically (FTIR and XPS), but as Breen et al. point out, differentiation between 

spectator species and true reaction intermediates can be difficult [5].  Generally, the lack of 

kinetic data tied to cyanide, isocyanate and organo-nitrogen concentrations makes elucidation of 

their role in the reduction of NOX difficult.  However, these species cannot be excluded as 

potential reaction intermediates and the presence of water may greatly alter their relative 

importance since –NCO species can readily react with water.  Reactions involving NCO 

adspecies can be described as follows [5]: 

−�(� + �� → �� + (�� (A6) 

−�(� + �� → ��� + (� (A7) 

−�(� + ��� → ��� + (�� (A8) 

−�(� + ��� → �� + (� + �� (A9) 
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−�(� + \�] → �� + (�� (A10) 

−�(� + 3�� → �3� + (�� + �� (A11) 

 

The last mechanism proposed for HC-SCR on platinum group metal involves reduction 

of the oxidized metal surface by hydrocarbons, followed by adsorption and decomposition of 

NO, where N(ads) combines with another N(ads) species to form N2 [2,3,5].  Fig. A24 

demonstrates this pathway.  In conclusion, a variety of mechanisms have been proposed for HC-

SCR of NOX and the true mechanism is still unknown.  Ag based systems are usually represented 

by mechanisms where isocyanate/organo-nitrogen intermediates dominate, but platinum group 

metal systems are preferentially described by NO decomposition mechanisms.  In reality, some 

or all of these mechanisms may be operating simultaneously, where the relative contribution of 

each pathway is dependent on the temperature, concentration of NO/NO2, concentration of 

reductant, concentration on O2, particle size and the inherent properties of the metal and the 

support.  In fact Meunier et al. [297] predicted drastically different behavior for Ag particles of 

varying sizes, where small particles oxidize NO to NO2 and large particles dissociate NO.   Fig. 

A25 depicts this behavior.  Notice how the NO decomposition and reaction through 

isocyanate/organo-nitrogen intermediates mechanisms are both occurring simultaneously, but the 

Ag particle size selectively activates one process over another.   
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Figure A24. NO decomposition mechanism for HC-SCR of NOX on platinum group metal 

supported catalysts, where the main role of the reductant is to remove adsorbed oxygen that can 

come from either adsorption of oxygen from the gas phase or decomposition of NO, Parvulescu 

et al. [2]. 
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Figure A25. Example of how Ag particle size could activate one mechanism over another.  

Notice that large Ag particles can participate in NO decomposition, where the role of adsorbed 

HC species is to scavenge O(ads) from the metal surface.   Small particles are reported to exist in 

an oxidized state and can only oxidize NO to NO2.  These site are responsible for catalyzing the 

NCO/organo-nitrogen route, Meunier et al. [297]. 

 

REDUCTION MECHANISMS BY CO AND HCS ON TWCS 

 The reduction of NOX under conditions where the concentration of NOX and available 

reductants is very close to the stoichiometric equivalent (i.e., TWCs) is generally accepted to 

proceed through decomposition of NO on the surface of a platinum group metal [2,3,5].   These 

catalysts are almost exclusively formulated using Pt or Pd supported on Al2O3, and promoted 

using Rh and/or ceria.  Rh and Ru are thought to be highly active metals since they selectively 

decompose NO to N(ads) and O(ads).  Ruthenium, while active, is poisoned by small amounts of 

gas phase O2 and is therefore not relevant for TWCs or NSR catalysts [2].  Ir on the other hand 

has been reported to decompose NO even in the presence of large amounts of gas phase oxygen 

and may be interesting for future study [2,132].  Reactions A12 – A15 describe reduction of NO 

by CO on TWCs [2]. 

(� +^ → ^ − (� (A12) 
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�� +^ → ^ −�� (A13) 

^ +^ −�� → ^ −� +^ − � (A14) 

^ −� +^ −� → �� + 2^ (A15) 

^ −� +^ −�� → ��� + 2^ (A16) 

^ −� + �� → ��� +^ (A17) 

^ − � + (� → (�� +^ (A18) 

^ −� + (� ↔ ^ −�(� (A19) 

 

Notice that Reaction 19 also describes the formation of isocyanate species, where M-

NCO could further react as described previously in Reactions A6-A11.  Parvalescu et al. 

suggested that formation of these species, while observed spectroscopically, constituted only 5% 

of the overall N2 production [2].  However, in a more recent review, Burch [3,5] suggests that 

this mechanism may be responsible for more N2 production than initially thought.  In summary, 

the mechanisms occurring on TWCs are pretty much identical to mechanisms presented for HC-

SCR catalysts. 

REDUCTION MECHANISMS BY CO AND HCS ON NSR CATALYSTS 

 Early reports on NSR catalysts mention the formation of isocyanates during reduction 

with carbon containing compounds, but their role in the reduction mechanism was not discussed 

[62].  Later, Fanson et al. [43] observed formation of strong bands at 2163 cm
-1

, which they 

assigned to isocyanates on Ba.  The intensity of the bands correlated well with the NOX storage 
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capacity of the catalysts, which was suggested to imply their role as intermediates.  However, if 

–NCO adspecies are spectators and account for only 5% of the total N2 produced, as suggested 

by Parvalescu et al. [2], it is logical that increasing or decreasing the amount of NOX stored on 

the catalysts would directly influence the concentration of isocyanate species as shown in 

Reaction A20. 

\−�(�] = _	\������
�] (A20) 

 Reaction A20 is meant for instructional clarification only and demonstrates the case 

where isocyanate species are formed via a side-route mechanism not responsible for production 

of N2, where _ is the fraction of Ba(NO3)2 that participates in this reaction (_=0.05 if you 

assume Parvalescu is correct).  While the true value for _ is unknown, use of this Reaction infers 

that the concentration of isocyanate species should be directly proportional to the amount of NOX 

stored by the catalyst, as observed by Fanson et al [43].  However, this does not establish these 

species as intermediates.  It only infers that their relative concentration is dependent on the 

amount of total NOX stored.  To more conclusively assign these species as intermediates, the 

intensity of isocyanate species needs to be tied to the concentration of N2 or other reduction 

products observed in the gas phase.   

Lesage et al. [145] attempted to compare the formation of isocyanate species to evolution 

of N2 by studying the NSR process on a Pt-Rh/Ba/Al2O3 catalyst using operando FTIR 

spectroscopy.  Isocyanate species were observed, even in the presence of water, but their 

intensity was much lower in comparison to experiments conducted under dry conditions.   

Additionally, their formation was not convincingly tied to production of N2.  Figure A26 (A) 

depicts the formation of isocyanates during rich conditions and their removal during the 

subsequent lean period.  Figure A26 (B) depicts the associated chemigrams and mass 
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spectrometer data.  Notice that production of N2 occurs mainly during the first few seconds of 

the rich periods (shown in grey) and drops off as the isocyanate species intensity increases.  This 

led the authors to imply that isocyanates poisoned the catalyst and led to deactivation during 

reduction.  Lesage et al. [145,146] reported that formation of isocyanate species was undesirable 

and suggested development of catalytic formulations to minimize formation of these species. 

 

 

Figure A26. NSR mechanism on Pt-Rh/Ba/Al2O3 studied by operando FTIR spectrometry.  (A) 

FTIR spectra demonstrating the formation of nitrates, carbonates and isocyanates during periodic 

lean/rich operations (Lean: 500 ppm NO, 10% O2, 10% CO2, 2% H2O; Rich: 2% CO, 1% H2, 

10% CO2, 2% H2O). (B) Chemigrams and mass spectra data corresponding to (A), where m=28 

corresponds to N2 and m=30 corresponds to NO, Lesage et al. [145]. 

In a later work, Lesage et al. [146] compared the Pt-Rh/Ba/Al2O3 to their newly 

formulated Pt/K/CeO2-Al2O3 catalyst and suggested that higher stability of nitrates on K resulted 

in a shift to longer times regarding formation of isocyanates.  Figure A27 represents this shift.  

While nitrates on K are generally thought to be more stable, increased consumption of reductants 

due to the oxygen storage capacity of ceria could also be used to explain the shift to longer times 

[151,164].  Generally, Lesage et al. [145,146] seem to favor the route of NO decomposition 

leading to production of N2, where formation and reaction of isocyanates could either poison the 

(A) (B) 
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catalyst or provide a supplementary route to N2.  Either way, isocyanate intermediates were not 

suggested as the main route to production of N2.   

 

Figure A27. Chemigrams and mass spectra during periodic lean/rich cycling (Lean: 500 ppm 

NO, 10% O2, 10% CO2, 2% H2O; Rich: 2% CO, 1% H2, 10% CO2, 2% H2O) performed on a 

Pt/K/CeO2-Al2O3 catalyst, where m=28 corresponds to N2 and m=30 corresponds to NO.  

Reprinted from Lesage et al. [146]. 

 

 In the absence of water, Abdulhamid et al. [27] observed formation of strong IR bands at 

2220 and 2162 cm
-1

 on M/Ba/Al2O3 (M=Pt, Pd, or Rh) catalysts using both CO and C3H6 as 

reductants.  These peaks have been confidently assigned to isocyanate species on Al and Ba, 

respectively [24,27]].  Since NCOs were observed during cycling using CO and C3H6, 

Abdulhamid et al. [27] concluded similar mechanistic pathways must operating for both 

reductants, but were reticent to suggest a reduction mechanism based on their data.  Deterioration 

of Pt based catalysts was observed and was attributed to the formation of carbonyls on Pt or 

isocyanates on Al (2230-2220cm
-1

) or Ba (2162 cm
-1

).  Interestingly, this behavior was not 

observed on Pd or Rh based catalysts.   
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Szailer et al. [24] on the other hand, proposed a fairly detailed mechanism based on their 

results using Pt/Al2O3 and Pt/Ba/Al2O3 catalysts.  At low temperatures, decomposition of NO 

and reaction of N(ads) with CO to form NCO(ads) was active, but production of N2 was low 

(<473 K).  At higher temperatures (>573 K), NCO(ads) could react with stored NOX to produce 

N2.  Addition of water drastically increased production of N2.  The following mechanism was 

proposed to explain these observations: 

�� − � + 3� → ��∗ + 3�� (A21) 

2�� − � → 2��∗ + �� (A22) 

�a + 1
��∗ + ��� → a�� − � + �� − � (A23) 

�� − � + �� − 3 → �� − �3� + �� − 3 → �3� (A24) 

�� − � + �� − (� → ��∗ + �� − �(� (A25) 

�� − � + (� → ��∗ + (�� (A26) 

�(���bc
 + ��� → �� + (�� (A27) 

�(���bc
 + 3�� → �3���bc
 + �3��bc
 (A28) 

�3� +��� + 3�� → \�3d���] → �� + 3�� (A29) 

Note: Pt
*
 represent a free Pt site and X(ads) represent a molecule adsorbed on a nondescript site 

 

Reactions A21-A24 describe reduction by H2 and were included to demonstrate that 

reduction of NOX by H2 or CO is preceded by decomposition of NO (Reaction A23).  For H2, the 

N adatom can either combine with another N adatom to form N2 (Reaction A22) or react with H2 
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to form ammonia (Reaction A24), where NH3 can desorb un-reacted or selectively reduce NOX 

(Reaction A29).  Similarly for CO, the decomposed N adatom can either combine with another N 

adatom or react with CO(ads) to form isocyanates (Reaction A25).  The authors admitted that 

reaction of two N adatoms cannot be excluded as a pathway for production of N2 when CO is 

used as a reductant, but suggested that the main route proceeded through formation of 

isocyanates that react with water, oxygen or stored NOX to ultimately form N2.  This claim is 

based on the observation that adding water and CO to the reactor during reduction increased 

production of N2.   

Two particularly important subtleties of this mechanism are worth mentioning.  First, NO 

must decompose to an N adatom before it can react with CO to form an isocyanate.  Therefore, 

both NO reduction mechanism share NO decomposition as a primary step.  Second, isocyanate 

species were not observed on metal surfaces, but on the support – both Ba (2162 cm
-1

) and Al2O3 

(2220-2250 cm
-1

) [24,27,43,62,64,145,146,289,290].  So, were isocyanate species reacting on the 

support with stored NOX, or must they diffuse back to the surface of the metal to undergo 

reaction? 

Recently, Breen et al. [16] reported reactor data consistent with the mechanism presented 

by Szailer et al., where a series of catalyst were tested in a fast transient reactor capable of 200 

ms time resolution. This allowed the NOX reduction process to be studied under realistic 

operating conditions (e.g., 60 s lean and 1.2 s rich).  In this case, N2 evolved in two distinct 

periods during reduction, the first occurred immediately after the switch from lean to rich and the 

second occurred immediately after the switch back to lean conditions.  Fig. A28 describes this 

behavior for a series of typical NSR catalysts, where the precious metal loading and type of 

precious metal greatly affected the behavior observed.   
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Figure A28.  Evolution of reaction products during a rich event (CO + H2 + H2O + CO2) at 350 

°C on a series of NSR catalysts formulated from commonly used precious metals including: (A) 

0.5% Pt, (B) 1.6% Pt, (C) 1.1% Rh and (D) 0.5% Pt-0.8% Rh supported on 17%Ba/Al2O3 (w/w), 

Breen et al. [16]. 

Figure A29 demonstrates how changing the reductant affected N2 evolution.  Notice the 

large N2 spike when CO was used as a reductant in the absence of H2, where approximately 90% 

of the total N2 evolved on this catalyst came from the 2
nd

 N2 evolution period.  This suggested 

that isocyanates were formed on the catalyst during rich periods and were quickly oxidized to N2 

or hydrolyzed to NH3
 
during subsequent lean periods.  Breen et al. concluded that the first N2 

peak was formed by rapid reduction of NOX on the surface of reduced Pt or Rh and the second 

N2 peak was formed by reaction of stored NH3 with stored NOX from by hydrolysis of 

isocyanates.  The authors omitted the possibility of oxidation of stored NH3 to produce N2 and 

reaction of isocyanates with NO/O2 to form N2 as another route to N2 production.  However, 

storage of NH3 at elevated temperatures is very unlikely, as recently shown by Bahrami et al. 

[175].  Lastly, Breen et al. [16] used fairly high concentrations of reductants, which could also 
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alter the reduction mechanism.  For example, a high concentration of CO in the gas phase may 

facilitate isocyanate intermediates because the probability of an N adatom reacting with an 

adsorbed CO species before it can react with another N adatom may increase if the concentration 

of CO on the surface increases proportionally to the concentration of CO in the gas phase. 

 

Figure A29. Reaction products during a rich event over a 0.5%Pt-0.8%Rh/17%Ba/Al2O3 (w/w) 

NSR catalyst at 250 °C, where the rich phase contained 6% CO, 6%H2 or 1.5% H2 and 4.5% CO, 

Breen et al. [16]. 

  Nova et al. [64,289] also proposed that the reduction of NOX could proceed through 

isocyanate intermediates, but pointed out that the water gas shift reaction (Reaction A30) could 

also create large amounts of H2 from CO in the presence of water.  When a Pt/Ba/Al2O3 catalyst 
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was exposed to CO and H2O, the light-off temperature for the WGS reaction occurred slightly 

above 200 °C.  Above 300 °C, H2 and CO2 were the only products observed, as shown in Fig. 

A30.  Scholz et al. [28,319,320] have also mentioned the WGS reaction as a potentially 

important reaction occurring on NSR catalysts.  This conclusion was reached because CO and H2 

were equally effective reductants in the presence of water, but H2 was much better than CO in 

the absence of water. 

(� + 3�� → 3� + (�� (A30) 

  

 

Figure A30. Temperature programmed surface reaction (TPSR) of 2000 ppm CO + 1% (v/v) 

H2O over a 1%Pt/20%Ba/Al2O3 (w/w) NSR catalyst, Nova et al. [64,289]. 

 

Forzatti et al. also suggested that formation of N2 proceeds through formation of 

isocyanate intermediates, where the isocyanates could then react with adsorbed NOX species, 

NO, O2 or H2O as shown in Fig. A31 [290].  However, an alternative mechanism for reduction of 

surface nitrates with CO in the absence of water was also proposed.  Reactions A31 – A35 

highlight this mechanism. 
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−�� − ���� + �� − (� → −�� − ��� + (�� + ��
∗ (31) 

−�� − ��� + �� − (� → −�� − �(��� + ��∗ (32) 

−�� − �(��� + �� − (� → −�� − �(�� + (�� + ��
∗ (33) 

−�� − �(�� + �� − (� → −�� − �(� + (�� + ��
∗ (34) 

−�� − �(� + �� − ��� → −�� − � − �� −	+	�� + (�� (35) 

 The first step involves decomposition of barium nitrate to nitrite.  Next, CO spills over 

from Pt onto Ba and inserts itself into barium nitrite forming an organo-nitrogen-like compound.  

Reaction with another CO molecule reduces this complex ultimately forming an NCO adspecies 

on Ba.  This species can then undergo reactions A6-A11, A27-A28, or reaction A35 to produce 

N2.   

 

Figure A31. Proposed reaction network for reduction of Ba(NO3)2 by CO in the absence of 

water.  Reprinted from Forzatti et al., 2010 [15]. 

In summary, reduction of NOX by CO and C3H6 has many potential reaction pathways 

and the overall reduction mechanism operating on these catalysts remains elusive. Additionally, 

the role of isocyanate intermediates is still unclear.  While a considerable number of 

investigations have observed isocyanate species in FTIR spectra, evidence tying their presence to 
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the production of N2 is still lacking, where parallel reactions like WGS greatly complicate 

understanding.  In the presence of H2O production of H2 from CO and H2O could dramatically 

change the reduction mechanism and could favor the currently proposed reduction mechanism 

for H2, which involves NH3 an intermediate [60,286,346].   

A.2.5 CONCLUSIONS 

 NOX storage and reduction catalysts are very promising for use in lean-burn engine 

exhausts because they are capable of converting high amounts of harmful NOX to N2 and have 

already been implemented in Japan.  Since their inception, many advances have been made and 

the current materials are more thermally resistant and sulfur tolerant than their predecessors.  

However, the reduction mechanisms occurring on these catalysts are still unclear.  Since these 

catalysts are often limited by their inability to completely reduce NOX stored during the short 

times necessary for these systems to operate, better understanding of the reduction mechanism is 

crucial for optimization of this aspect of the catalyst. 

 While the specific reduction mechanism is still unclear, this review has exposed some of 

the more significant conclusions available in the literature.  Mainly, release of stored NOX most 

likely proceeds through adsorption of reductant molecules that either react with NOX on the 

metal surface or spillover onto the support and destabilize/react with adsorbed NOX.  Reduction 

by CO or hydrocarbons most likely proceeds through NO decomposition to N adatoms that react 

with other N adatoms to form N2 or react with adsorbed to form isocyanates, where isocyanates 

could then react with NO, O2, H2O or stored NOX to produce N2, N2O or NH3, where NH3 is an 

excellent molecule for SCR of NOX.  Additionally, the role of the WGS reaction cannot be 
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excluded and CO may react with water to produce H2, which has long been considered a better 

reductant than CO or C3H6.  The role of C3H6 in the reduction of stored NOX is still unclear. 
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